Bomb Calorimetry

A. Thermodynamics

- 1. *First Law*: $\Delta E = q + w$ (*E* = internal energy; *q* & *w* are heat added to and work done on system)
- 2. *PV work*: $w_{PV} = -\int PdV$ Thus, if w_{PV} is the only work, w = 0 when V is constant, yielding
- 3. $\Delta E = q (= q_V)$, process at constant *V*, *PV* work only.
- 4. *Enthalpy* <u>defined</u>: H = E + PV. With this definition, $\Delta H = q \ (= q_P)$ for process at constant *P*.

B. Chemical Reaction

- 1. $\Delta E_{rx} = \sum v_i E_i$ $v_i = stoichiometry number (+ for products, for reactants)$
- 2. $\Delta H_{rx} = \sum v_i H_i = \sum v_i \Delta H_{f,i}$ (formation enthalpy)

3. *Standard States*: ° designates substances in standard state, which includes $P = P^\circ = 1$ bar (≈ 750 Torr). (see CP)

4.
$$\Delta H^{\circ} = \sum v_i \Delta H^{\circ}_{f,i} = \Delta E^{\circ} + \Delta (PV)^{\circ} = \Delta E^{\circ} + P^{\circ} \Delta V^{\circ}$$

- 5. For gases: $\Delta H^{\circ} = \Delta E^{\circ} + \Delta v_g RT$ ($\Delta v_g = \text{mol gaseous}$ products mol gaseous reactants; ΔV° negligible for solids and liquids.)
- **C. Bomb Calorimetry**
 - 1. V is constant \Rightarrow measure $q_V = \Delta E$.
 - 2. Determine by precisely measuring *T* change.
 - 3. *Calibration*: Measure ΔT for known standard (benzoic acid) and determine *calorimeter constant*, $C_{\rm K} = q/\Delta T$.
 - 4. *Sample* heat: $q_s = C_K \Delta T_s$ (from combusion of sample)

D. Estimation of ΔT

