Bomb Calorimetry

A. Thermodynamics

1. **First Law**: \(\Delta E = q + w \) (\(E \) = internal energy; \(q \) & \(w \) are heat added to and work done on system)

2. **PV work**: \(w_{PV} = - \int PdV \) Thus, if \(w_{PV} \) is the only work, \(w = 0 \) when \(V \) is constant, yielding

3. \(\Delta E = q \) (= \(q_V \)), process at constant \(V \), \(PV \) work only.

4. **Enthalpy defined**: \(H \equiv E + PV \). With this definition, \(\Delta H = q \) (= \(q_P \)) for process at constant \(P \).

B. Chemical Reaction

1. \(\Delta E_{rx} = \sum \nu_i E_i \quad \nu_i = \text{stoichiometry number} (+ \text{ for products, } - \text{ for reactants}) \)

2. \(\Delta H_{rx} = \sum \nu_i H_i = \sum \nu_i \Delta H_{f,i} \quad \text{(formation enthalpy)} \)
3. **Standard States**: ° designates substances in standard state, which includes \(P = P^\circ = 1 \text{ bar} \ (\approx 750 \text{ Torr}) \). (see CP)

4. \[\Delta H^\circ = \sum v_i \Delta H^\circ_{f,i} = \Delta E^\circ + \Delta (PV)^\circ = \Delta E^\circ + P^\circ \Delta V^\circ \]

5. For gases: \(\Delta H^\circ = \Delta E^\circ + \Delta v_g RT \) \((\Delta v_g = \text{mol gaseous products} - \text{mol gaseous reactants}; \Delta V^\circ \text{ negligible for solids and liquids.}) \)

C. **Bomb Calorimetry**

1. \(V \) is constant \(\Rightarrow \) measure \(q_V = \Delta E \).

2. Determine by precisely measuring \(T \) change.

3. **Calibration**: Measure \(\Delta T \) for known standard (benzoic acid) and determine calorimeter constant, \(C_K = q/\Delta T \).

4. **Sample heat**: \(q_s = C_K \Delta T_s \) (from combustion of sample)
D. Estimation of ΔT