Inversion of Sucrose

A. Reaction and Kinetics

- 1. $S + H^+ + H_2O \rightarrow F + G + H^+$ (*i.e.*, acid-catalyzed)
- 2. *Rate Law*: $r = -d[S]/dt = k_H [H^+] [S] = k_{eff} [S]$ (*pseudo-first order* — because [H⁺] doesn't change)
- 3. *Integrate*: $-d[S]/[S] = k_{eff} dt \implies \ln[S] = \operatorname{const} k_{eff} t$
- 4. Boundary Condition: @ t = 0, $[S] = [S]_0 \Rightarrow \text{ const} = \ln [S]_0$ $\Rightarrow [S] = [S]_0 \exp(-k_{\text{eff}} t)$ (first-order decay law)

B. Experiment

- 1. Measure α with polarimeter. But all 3 sugars are optically active, so α doesn't vanish when S is 100% converted.
- 2. Rather, $\alpha = A \exp(-k_{\text{eff}} t) + B$ (exponential + background)
- 3. $t = 0: \alpha (\equiv \alpha_0) = A + B;$ $t = \infty: \alpha_\infty = B (\alpha \text{ for } F + G)$

- 4. Specific rotation: $\alpha = [\alpha]_{\lambda}^{T}[] \ell$ units of $[\alpha]_{\lambda}^{T}$: degree L g⁻¹ dm⁻¹
- 5. Need one "completion" run to get α_{∞} .

C. Temperature Dependence

- 1. Arrhenius: $k = A \exp(-E_a/RT) \implies \ln k = \ln A E_a/RT$
- 2. *Typical*: Have k at two $Ts \Rightarrow k_2/k_1 = \exp[(E_a/R)(1/T_1 1/T_2)]$ $\ln(k_2/k_1) = (E_a/R)(1/T_1 - 1/T_2)$ (don't need A)
- 3. *Note*: This is our second encounter with $\ln() = a + b/T$. We will see it again in analyzing the *T* dependence of equilibrium constants (Expt. 5) and vapor pressure (Expt. 6).

In all such thermodynamic applications, *T* is in K.