Temperature and Pressure Calibration

A. Pressure

1. Reference: Hg manometer \rightarrow 1 Torr \approx 1 mm Hg

 $1 \text{ Torr} \equiv \frac{1}{760} \text{ atm} \equiv \frac{1}{760} 101325 \text{ Pa}$

2. Temperature correction (for T dependence of ρ for Hg)

 [Eqs. (6), p. 34 of CP; 2nd form adequate]

3. Open-ended manometer: $\Delta h(\text{mm})$ for Hg $\approx P_{\text{atm}} - P_{\text{sys}}$ (Torr);
 get P_{atm} from barometer.

4. Device: Capacitance Manometer

 a. $V \sim$ linear in P for any gas
 b. Gives 10.0 V full scale (0-100 Torr or 0-1000 Torr)

5. Correction Plot: $\Delta P \equiv P_{\text{true}} - P_{\text{app}}$ vs. P_{app}; then

 $P_{\text{true}} = P_{\text{app}} + \Delta P$
B. Temperature

1. Reference: Hg thermometer → must check at ice point or refer to calibration data from manufacturer.

2. Device: Thermistor ("thermally sensitive resistor")
 a. \(R \approx R_\infty \exp(\Delta E/2kT) \) (\(T \) in K !!)
 b. Very sensitive but not very accurate.

3. Correction Plot: \(\Delta T \equiv T_{\text{true}} - T_{\text{app}} \) vs. \(T_{\text{app}} \); then
 \[
 T_{\text{true}} = T_{\text{app}} + \Delta T \quad [i.e., \text{same approach}]
 \]

C. Two-Point Formulas

1. Linear: \(y = a + b \, x \) → \(y_1 = a + b \, x_1 \) & \(y_2 = a + b \, x_2 \)
 solve for \(a \) and \(b \) → calculate \(y_i \) for any \(x_i \).

2. Exponential: Use logarithms and do same →
 \[
 \ln(R) = \ln(R_\infty) + \Delta E/2kT \equiv a + b/T .
 \]
D. Illustrations

\[y = -0.109628 + 1.01612x \quad \text{R} = 0.999893 \]
E. **Required Submission?** — virtually NO writeup here, but we do want figures and tables with good, descriptive, self-contained *captions*.
Figure 5. VP-ITC temperature correction (true - fiducial) over the stated range. The curve is a fitted quadratic in the argument $(t - 25^\circ)$ and gives an error of $0.123(3)$ K at 25°C. Most values beyond 25° were recorded after the VP-ITC instrument had equilibrated at the specified temperature.