Temperature and Pressure Calibration

A. Pressure

- 1. *Reference*: Hg manometer $\rightarrow 1$ Torr ≈ 1 mm Hg 1 Torr $\equiv \frac{1}{760}$ atm $\equiv \frac{1}{760}$ 101 325 Pa
- 2. *Temperature correction* (for *T* dependence of ρ for Hg) [Eqs. (6), p. 34 of CP; 2nd form adequate]
- 3. Open-ended manometer: $\Delta h(\text{mm})$ for Hg $\approx P_{\text{atm}} P_{\text{sys}}$ (Torr); get P_{atm} from barometer.
- 4. Device: Capacitance Manometer
 - a. $V \sim \text{linear in } P \text{ for any gas}$
 - b. Gives 10.0 V full scale (0-100 Torr or 0-1000 Torr)
- 5. *Correction Plot*: $\Delta P = P_{\text{true}} P_{\text{app}}$ vs. P_{app} ; then

$$P_{\text{true}} = P_{\text{app}} + \Delta P$$

B. Temperature

- 1. *Reference*: Hg thermometer \rightarrow must check at ice point or refer to calibration data from manufacturer.
- 2. Device: Thermistor ("thermally sensitive resistor")

a. $R \approx R_{\infty} \exp(\Delta E/2kT)$ (T in K !!)

b. Very sensitive but not very accurate.

3. Correction Plot: $\Delta T \equiv T_{true} - T_{app}$ vs. T_{app} ; then $T_{true} = T_{app} + \Delta T$ [*i.e.*, same approach]

C. Two-Point Formulas

- 1. *Linear*: $y = a + b x \rightarrow y_1 = a + b x_1$ & $y_2 = a + b x_2$ solve for *a* and *b* \rightarrow calculate y_i for any x_i .
- 2. *Exponential*: Use logarithms and do same \rightarrow

$$\ln(R) = \ln(R_{\infty}) + \Delta E/2kT \equiv a + b/T.$$

D. Illustrations

E. Required Submission? — virtually NO writeup here, but we do want figures and tables with good, descriptive, self-contained *captions*.

Figure 5. VP-ITC temperature correction (true - fiducial) over the stated range. The curve is a fitted quadratic in the argument $(t - 25^{\circ})$ and gives an error of 0.123(3) K at 25°C. Most values beyond 25° were recorded after the VP-ITC instrument had equilbrated at the specified temperature.