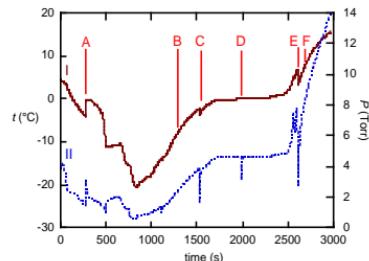


Pledge and signature:


Note: If you want your paper returned folded (*i.e.*, score concealed), please print your name on the back.

1. (8) Consider the accompanying figure, for vapor equilibrium with both the solid and liquid phases of Br_2 . Using this figure, determine (a) the triple point T and P ; (b) the normal boiling point T ; and (c) $H_{\text{m,vap}}$. You should obtain T s within ~1%, P s to 5%, and H_{m} to 2%.

2. (2) Bob and Carol record sublimation and vapor P data for a substance near its triple point and obtain $H_{\text{sub}} = 35.1 \text{ kJ/mol}$ and $H_{\text{vap}} = 29.1 \text{ kJ/mol}$. Ted and Alice do the same experiment on the same substance and obtain $H_{\text{sub}} = 31.5 \text{ kJ/mol}$ and $H_{\text{vap}} = 36.2 \text{ kJ/mol}$. Which of these sets of results must certainly be wrong, at least in part; and how do you know this?

3. (4) The accompanying figure shows typical data for our TP experiment. Identify (a) the t and P curves, (b) a region where three phases are present in equilibrium, (c) a region of good sublimation vapor P data, and (d) a region of good vapor/liquid data. [Give letters for (b-d).]

4. (2) On going from the Clapeyron equation, $\frac{dP}{dT} = \frac{S}{V}$, to the integrated Clausius-Clapeyron equation (which you used in 1c above), which of the following did we employ?

a. $S = T \frac{dH}{dT}$ b. $d(1/T) = T^{-2} dT$ c. $\ln P^2 = -2 \ln (1/P)$ d. $H_{\text{m}} = \text{constant}$
 e. $T_0 = \text{triple point } T$ f. none of these g. more than one of these