Questions 2-5 concern the equilibrium \(A + B \leftrightarrow C \), which is studied spectrophotometrically at 550 nm, where only \(A \) absorbs light. A 1.000-cm path length cuvette is used. The stock solution of \(A \) at a concentration of 0.0227 M gives an absorbance of 1.229. 3.00 mL of this solution is mixed with 1.00 mL of 0.0319 M \(B \), and this mixture gives an absorbance of 0.714 at 550 nm.

2. (3) Calculate (a) the transmittance associated with the first absorbance measurement, and (b) the molar absorptivity of \(A \) at 550 nm.

(a) \(10^{-A} = 0.0590 \)
(b) \(\varepsilon = A/c \ell = 54.1 \text{ L mol}^{-1} \text{ cm}^{-1} \)

3. (2) Calculate \([A]\) in the equilibrium mixture.

\[c = A/\varepsilon \ell = 0.0132 \text{ mol/L} \]

4. (2) Calculate \([B]\) in the equilibrium mixture.

\[[B]_0 - [B] = [A]_0 - [A] \Rightarrow [B] = 0.0041\text{ mol/L} \]

5. (3) Calculate the equilibrium constant \(K_c \) for this system.

\[[C] = [A]_0 - [A] = 0.00384 \text{ mol/L} \]
\[K_c = [C]/([A][B]) = 70.3 \text{ L/mol} \]

6. (3) For a particular reaction, \(K = 8.6 \times 10^{19} \) at 25°C and \(K = 1.09 \times 10^{15} \) at 125°C. If the first of these \(K \) values is uncertain by 3.5% and the second by 5.3%, what is the uncertainty in the natural logarithm of their ratio?

If \(r = \text{ratio} \), then its percent uncertainty is \((3.5^2 + 5.3^2)^{1/2} \% = 6.35 \% \).

If \(z = \ln r \), then \(s_z = s_r/r = 0.0635 \) (0.06).