

Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.

A. (13) Bomb Calorimetry.

1. (3) Combustion of 1.270 g of substance A raises the temperature of 0.931 kg of water by 2.44 K. Therefore, combustion of 1.710 g of A will raise the T of 1.190 kg of water by how much?
2. (3) Taking the first two masses and the first T given above as exact, and the 3rd and 4th masses as uncertain by 0.006 g and 0.003 kg, respectively, calculate (a) the % uncertainty, and (b) the absolute uncertainty in your computed T . (c) Use the latter to state your result correctly.
3. (4) Calculate the value of $H^\circ - E^\circ$ at 25°C for the combustion of 1.00 mol of heptane (C_7H_{16}) to produce $CO_2(g)$ and $H_2O(g)$. ($R = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1}$.)
4. (3) List the three most significant quantities you measure in conjunction with running a single bomb calorimetry experiment, and give reasonable values and uncertainties for each.

B. (14) Phase Equilibria and the Triple Point.

1. (6) The normal boiling point of water is 100.0°C , and $H_{\text{m,vap}} = 40.66 \text{ kJ/mol}$ at that T . Taking $H_{\text{m,vap}}$ to be constant, calculate the boiling point of water at the top of Pike's Peak on a day when the atmospheric pressure is its average value of 446 torr.
 2. (3) I. B. Alwette and U. B. Water run the TP experiment and analyze their data to obtain $H_{\text{m,vap}} = 44.74 \pm 0.12 \text{ kJ/mol}$ and $H_{\text{m,sub}} = 52.39 \pm 0.07 \text{ kJ/mol}$. Calculate from these results H_{fus} and its uncertainty. State the results with the proper numbers of significant figures.
 3. (5) In analyzing our vapor pressure data for water, we assumed that $H_{\text{m,vap}}$ was independent of temperature. Over an extended T range, this becomes a poor approximation. Suppose we include the T -dependence in $H_{\text{m,vap}}$ by treating C_P ($= C_{P,\text{m},g} - C_{P,\text{m},l}$) as independent of T .
 - (a) Give an expression for $H_{\text{m,vap}}(T)$, in terms of C_P and $H_{\text{m,vap}}$ at the triple point (T_0). [If need be, you can derive this using ($H/T)_P = C_P$.]
 - (b) Use this expression to obtain a version of the integrated Claußius-Clapeyron equation that could be used to analyze vapor pressure data to obtain C_P and $H_{\text{m,vap}}$ at T_0 .