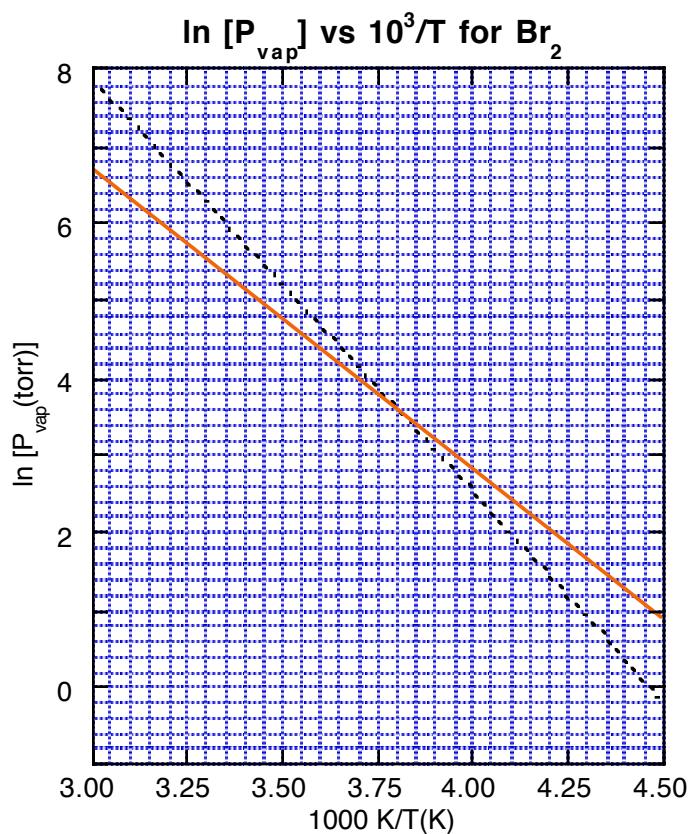


Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.

A. (8) Bomb Calorimetry — practical.


1. (3) A 0.893 g tablet of phenol (C_6H_5OH , $M = 94.12$) is completely burned in a bomb calorimeter having $C_K = 13.22 \text{ kJ K}^{-1}$, producing a temperature increase of 2.192°C . Calculate (a) the combustion heat, and (b) the specific and molar heats of combustion of phenol.
2. (5) Write a balanced reaction for the complete combustion of phenol at room T . Use this to calculate $\Delta H^\circ - \Delta E^\circ$ for this reaction at 25°C [$R = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1}$.]

B. (7) Bomb Calorimetry — conceptual.

1. (3) Combustion of 1.170 g of substance A raises the temperature of 0.931 kg of water by 2.44 K. Therefore, combustion of 1.510 g of A will raise the T of 1.190 kg of water by how much?
2. (4) Taking the first two masses and the first ΔT given above as exact, and the 3rd and 4th masses (1.510 g and 1.190 kg) as uncertain by 0.026 g and 0.033 kg, respectively, calculate (a) the % uncertainty, and (b) the absolute uncertainty in your computed ΔT . (c) Use the latter to state your result correctly.

C. (12) Phase Equilibria and the Triple Point.

1. (5) For water near its triple point, I. B. Allwette determines $\Delta H_{m,\text{fus}} = 6.2 \pm 0.7 \text{ kJ mol}^{-1}$ and $\Delta H_{m,\text{vap}} = 44.9 \pm 0.5 \text{ kJ mol}^{-1}$. Calculate ΔH_m for the sublimation process, $\text{H}_2\text{O}(s) \rightarrow \text{H}_2\text{O}(g)$, and its uncertainty, and report the result correctly.
2. (7) Consider the accompanying figure, which shows the natural log of the vapor pressure of Br_2 as a function of $1/T$, for both solid and liquid phases. Using this figure, estimate (a) the triple point T and P ; (b) the normal boiling point T ; and (c) $\Delta H_{m,\text{vap}}$. (R is on p. 1)

