Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.

A. (6) Calibration with 2-point functions.

1. A Baratron pressure gauge gives a reading of 0.27 V when $P = 0$, and 8.07 V when $P = 760$ torr. What is the apparent P when this gauge reads 3.33 V?

2. A particular thermistor shows a resistance of 19.27 kΩ at 10.0°C and 2.557 kΩ at 50.0 °C. The resistance is measured to be 8.93 kΩ when the thermistor is immersed in an unknown bath. What is the apparent temperature of the bath?

B. (6) Calibration — Fitting the data. You obtain the illustrated results upon fitting your thermistor calibration data (true − apparent), obtained over the region 19-32°C.

1. Properly state the correction and its statistical error at 25°C.

2. If there are 29 data points, what is the estimated standard deviation (s_y) of these data?

3. If the thermistor reads 20.47°C, what is the corrected temperature?

<table>
<thead>
<tr>
<th>$y = a + b(x-25) + c(x-25)^2$</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.050861789</td>
<td>0.001247068</td>
</tr>
<tr>
<td>b</td>
<td>0.0036498518</td>
<td>0.0002037433</td>
</tr>
<tr>
<td>c</td>
<td>-0.00074572609</td>
<td>3.839555e-05</td>
</tr>
<tr>
<td>Chisq</td>
<td>0.00049905721</td>
<td>NA</td>
</tr>
<tr>
<td>R</td>
<td>0.96765516</td>
<td>NA</td>
</tr>
</tbody>
</table>
C. (14) Inversion of pickanose.

1. (3) The acid-catalyzed inversion of pickanose has a rate constant of 0.0324 L mol$^{-1}$ min$^{-1}$. A reaction is initiated by mixing 5.00 mL of 6.0 M HCl with 20.0 mL of a solution of pickanose. Assuming that volumes are additive, calculate the effective rate constant for this mixture; or indicate if you think that this cannot be done.

2. (4) This reaction is monitored by polarimetry. The optical rotation is initially 25.0° and is −5.0° when the reaction has gone to completion. Calculate the rotation after (a) one half-life, and (b) after two half-lives; or indicate if you think there is insufficient information to determine these quantities.

3. (3) The rate constant k_H increases by a factor of 3.9 when the temperature is increased from 20.0° C to 40.0° C. Calculate the activation energy E_a. $[R = 8.31451 \text{ J mol}^{-1} \text{ K}^{-1}]$

4. (4) Suppose that the $k_{H,20}$ and $k_{H,40}$ values are each uncertain by 10%.
 (a) Calculate the % uncertainty in their ratio; use this result to state this ratio and its uncertainty.

 (b) Calculate the uncertainty in $\ln(k_{H,40}/k_{H,20})$.

 (c) Use the last result to calculate the uncertainty in E_a. (Take temperatures as error-free.)