

Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.

1. (5) A quantity x is uncertain by 2.0% and y is uncertain by 3.0%. Give the % uncertainties for z in each of the following cases:

a. $z = 5/y$

d. $z = 5x^2/y$

b. $z = 11x^3$

c. $z = 1/\sqrt{7y}$

e. $z = \sqrt{4xy}$

2. (4) An unweighted fit of 22 thermistor calibration correction values yields the results shown here. Calculate s_y^2 and s_y . (Give at least four significant figures.)

$y = a + b(x-25) + c(x-25)^2$		
	Value	Error
a	0.0508611789	0.001247068
b	0.0036498518	0.0002037433
c	-0.00074572609	3.839555e-05
Chisq	0.00049905721	NA
R	0.96765516	NA

3. (3) In the triple-point experiment, we will estimate the heat of fusion of ice from the sublimation and vaporization heats using $H_{\text{fus}} = H_{\text{sub}} - H_{\text{vap}}$. If $H_{\text{vap}} = 40.738 \pm 0.107 \text{ kJ/mol}$ and $H_{\text{sub}} = 47.597 \pm 0.072 \text{ kJ/mol}$, calculate H_{fus} and its uncertainty, and use the 10% rule to properly express these results.

4. (4) We learned last week that Arrhenius activation energies can be estimated from two values of the rate constant, at T_1 and T_2 , using $\ln(k_2/k_1) = E_a/R(T_1^{-1} - T_2^{-1})$.

a. If k_2 has 2.0 % uncertainty and k_1 has 1.5 % uncertainty, what is the % uncertainty in their ratio?

b. Assuming T_1 and T_2 have negligible uncertainty, use these results to give an expression for the uncertainty in E_a . (Hint: To help keep things straight, let $y = k_2/k_1$ and $z = \ln y$; then express E_a in terms of z .)