

A. (3) **Calibration functions.** A Baratron pressure gauge gives a reading of -0.27 V when $P = 0$, and 8.51 V when $P = 761$ torr. What is the apparent P when this gauge reads 4.33 V?

$$P = a + bV \quad P(4.33V) = 398.7 \text{ torr}$$

B. (3) **P calibration — away from mercury.** An oil manometer charged with dibutyl phthalate ($\rho = 1.046$ g/mL) yields a level difference $h = 42.3$ mm in a system where the reference arm is held at a pressure of $P = 1.06$ torr. What is the pressure of the gas sample? ($\rho_{\text{Hg}} = 13.595$ g/mL)

$$P = 42.3 \text{ torr} \times 1.046/13.595 = 3.255 \text{ torr} \quad P = 4.31 \text{ torr}$$

C. (6) **Calibration — Fitting the data.** You obtain the illustrated results upon fitting your thermistor calibration data (true — thermistor vs. thermistor), obtained over the region 19 – 32°C .

- Properly state the correction and its statistical error at 25°C . $T = 0.0509(12)^\circ$
- If there are 24 data points, what is the estimated standard deviation (s_y) of these data?

$$s_y^2 = \text{Chisq}/(n-1) = 2.3765 \times 10^{-5} \quad s_y = 0.004875^\circ$$

- If the thermistor reads 30.47°C , what is the corrected temperature? 30.52°C

D. (15) Pickanose⁻¹.

- (3) The acid-catalyzed inversion of pickanose has a rate constant of $0.0324 \text{ L mol}^{-1} \text{ min}^{-1}$. A reaction is initiated by mixing 10.00 mL of 4.0 M HCl with 20.0 mL of a solution of pickanose. Assuming that volumes are additive, calculate the effective rate constant for this mixture; or indicate if you think that this cannot be done.

$$k_{\text{eff}} = 0.0432 \text{ min}^{-1}$$

- (3) This reaction is monitored by polarimetry. The optical rotation is initially 18.0° and is -8.0° when the reaction has gone to completion. Calculate the rotation (a) after one half-life, and (b) after two half-lives; or indicate if you think there is insufficient information to determine these quantities.

Rx is 1/2 completed after 1 half-life, 3/4 completed after 2. (1) 5.0° (2) -1.5°

- (6) The reaction is studied at 20.0°C and at 45.0°C . Suppose that the $k_{\text{H},20}$ and $k_{\text{H},45}$ values are each uncertain by 8%, and their ratio is 4.5.
 - Calculate the % uncertainty in their ratio; use this result to state this ratio and its uncertainty.
$$(8^2 + 8^2)^{1/2} \% = 11.3 \% \quad r = 4.5(5)$$
 - Calculate the uncertainty in $\ln(k_{\text{H},45}/k_{\text{H},20})$. $s(\ln r) = s_r/r = 0.113$
 - Use the last result to calculate the uncertainty in the activation energy E_a . (Take temperatures as error-free; $R = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1}$)

$$\ln r = E_a/R (1/T_1 - 1/T_2) \quad sE_a = s(\ln r) R/(1/T_1 - 1/T_2) = 3.51 \text{ kJ/mol}$$

- (3) A solution of a different sugar, bashanose, is prepared by dissolving 23.71 g of bashanose in water and bringing the volume to 0.100 L in a volumetric flask. The optical rotation observed at D for this solution in a 0.200-m polarimetry cell at 25°C is 14.7° . Calculate the specific rotation of bashanose (units $\text{deg mL g}^{-1} \text{ dm}^{-1}$) at this wavelength and T .

$$31.0 \text{ deg mL g}^{-1} \text{ dm}^{-1}$$