

## Chemistry 236 -- Quiz 2

September 29, 2010 — Least Squares and Probability Distributions

Lab Day \_\_\_\_\_

**Pledge and signature:**

**Note:** If you want your paper returned folded (*i.e.*, score concealed), please print your name on the back.

1. (7) Consider the probability distribution,  $P(x) = c(1-x)$ , defined over the range  $0 \leq x \leq 1$ . For this distribution, calculate: (a) the normalization constant, (b) the mean, (c) the variance, and (d) the standard deviation.

2. (6) Suppose you generate  $10^5$  random numbers using this distribution.

(a) How many would you expect to fall within the  $x$  range 0.40–0.50? And what is the standard deviation of this value?

11000 (11000)<sup>1/2</sup> (Poisson)

(b) If you now generate  $10^5$  *averages* of 8 such random numbers, what is the expected mean and standard deviation for these averages?

$$1/3 \qquad \qquad \qquad /8^{1/2} = 1/12$$

3. (5) Briefly sketch on the provided grid the *shapes* of the following probability distributions (*i.e.*, don't worry about the y-axis scale). Label your curves clearly.

(a)  $P(x)$  from Prob. 1 above; straight line, from  $(x,y) = (0,2)$  to  $(1,0)$

(b) what you expect if you average 20 random deviates from this same  $P(x)$ ;  
narrow normal distribution centered at  $x = 1/3$

(c) what you observed in KG4 when you histogrammed averages of 2 uniform random deviates.

histogram approximates a triangular distribution, peak at  $x = 1/2$

#### 4. (8) Least Squares and KaleidaGraph.

(a) We often fit data to polynomials in  $x$  or in  $(x - x_0)$  ( $x_0$  a constant) to achieve a smooth representation of data. Suppose you have fitted data, unweighted, to such a function. When do these results tell you that dropping a term will yield a smaller  $s_y$ , hence a statistically better fit?

If the absolute value of any parameter is smaller than its statistical error, setting it = 0 will reduce  $s_y^2$ .

(b) Suppose you fit thermistor calibration data for the region  $19\text{--}34^\circ$  to a quadratic polynomial. How can you define this fit so as to easily obtain the calibration correction at  $29^\circ$  and its uncertainty?

Fit to  $a + bz + cz^2$ , w/  $z = (x - 29)$ . Then when  $x = 29$ , the correction =  $a$  and its error  $s_a$ .

(c) Write **exactly** what you should enter in the Define Fit box to fit your sums of 12 uniform random deviates to a Gaussian function. [gf(x) NOT adequate here!] What values should you obtain (approximately) for the parameters that govern the *location* and *width* of the distribution?

$a^* \exp(-(x-b)^2/c^2)$ ;  $a=1000$ ;  $b=6$ ;  $c=1$ . [or  $a^* \exp(-(x-b)^2/2/d^2)$ ] The location parameter

(b) should be about 6, and the width  $-d = 1$  or  $c = \sqrt{2}$ .