

Chemistry 236 — Quiz 2
November 1, 2006 — Tellinghuisen

Honor Code Pledge: *I have neither given nor received aid on this exam.*

_____ (Signature)

I. (11) Bombs Away.

A. (8) Strangelove uses a bomb calorimeter to estimate the heat of combustion of an unknown. The calorimeter is calibrated with benzoic acid (BA, $q_{\text{specific}} = -26.413 \text{ kJ/g}$); both the BA and the unknown are ignited with iron fuse wire ($q_{\text{specific}} = -6.68 \text{ kJ/g}$).

In experiments run at $\sim 25^\circ\text{C}$, 1.038 g of BA and 57 mg of fuse wire yield a temperature rise of 1.119 K. Then 1.372 g of unknown and 48 mg of fuse wire produce a ΔT of 1.322 K. In each case the calorimeter pail is filled with the same volume of water. Calculate (1) the calorimeter constant, and (2) q_{specific} for the unknown.

(1) $C_K = 24.84 \text{ kJ/K}$

(2) $q_{\text{spec,unk}} = -23.70 \text{ kJ/g}$

B. (3) Calculate the value of $H^\circ - E^\circ$ for the combustion of cyclohexane [$\text{C}_6\text{H}_{12}(\ell)$] at 40.0°C . [$R = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1}$].

$H^\circ - E^\circ = -7.811 \text{ kJ/mol}$

II. (14) Smucrose-1.

A. (4) **Getting Started.** Polarimetry is used to study the inversion process for a newly discovered sugar, smucrose. Initially a 20.0-cm polarimeter tube is charged with a solution of smucrose and $\text{HCl}(aq)$ prepared by mixing 25.0 mL of a stock smucrose solution with 15.0 mL of 4.0 M HCl . At the start of the inversion reaction, the measured rotation of the polarimeter is 11.3° , and after a very long time, the rotation is measured to be -14.2° . The specific rotation $[\alpha]^T$ for smucrose is 46.4 degree $\text{dm}^{-1} \text{ mL g}^{-1}$ at the temperature and wavelength used in the experiment. Calculate (1) the initial concentration of smucrose, and (2) the initial concentration of HCl in the polarimeter tube.

$$(1) [\text{smucrose}] = 0.122 \text{ g/mL}$$

$$(2) [\text{HCl}] = 1.5 \text{ M}$$

B. (6) **Inverting.** The reaction is found to reach the inversion point after 33 min. Calculate (1) the effective rate constant k_{eff} and (2) the rate constant k_{H} .

$$(1) k_{\text{eff}} = 0.0177 \text{ min}^{-1}$$

$$(2) k_{\text{H}} = 0.0118 \text{ L mol}^{-1} \text{ min}^{-1}$$

C. (4) **Getting Warmer.** The rate constant is found to increase by a factor of 2.35 when the temperature is increased from 20.0°C to 40.0°C . Calculate the activation energy E_a . $[R = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1}]$.

$$E_a = 32.6 \text{ kJ/mol}$$

III. (8) Triple Trouble.

A. (6) I. B. Alwette and U. B. Water run the TP experiment and analyze their data to obtain $H_{\text{vap}} = 45.74 \pm 0.13 \text{ kJ/mol}$ and $H_{\text{sub}} = 52.09 \pm 0.08 \text{ kJ/mol}$. Calculate from these results H_{fus} and its uncertainty. State the results with the proper numbers of significant figures.

6.35(15) kJ/mol

B. (2) Morely Smartt does very careful vapor pressure measurements on water near 25°C and obtains $H_{\text{vap}} = 44.001(3) \text{ kJ/mol}$, while Bud Wizer breezes through and gets 44.8(9) kJ/mol. The literature value is 44.012 kJ/mol. Which determination — Smartt's or Wizer's — is the greater cause for "concern"? Explain briefly.

Wizer's result is much further from the accepted value, but it is nonetheless within 1%. On the other hand, Smartt's value is off by 3.7%, which has a very small probability of occurring randomly. Thus, Smartt's result could mean that the literature value is, in fact, wrong. This makes Smartt's a greater source of concern.

IV. (6) Percent Error.

Suppose that x , y , and z are obtained from measured values of t , u , and v , which have % uncertainties of 3.0%, 5.0%, and 2.0%, respectively. If $x = 5v^{-3/2}$, $y = 9u/v$, and $z = 13t^3u/v^2$, what are the % uncertainties in x , y , and z ?

x : 3.0%

y : 5.4%

z : 11.0%