


Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.

A. (12) Calibration.

1. (3) A Baratron gauge (capacitance manometer) gives a reading of -0.27 V when $P = 0$, and 7.08 V when $P = 760$ Torr. What is the apparent P when the gauge reads 4.44 V?

2. (2) Calibration data for a thermistor are as shown in the accompanying graph. If the thermistor reads -27.0°C , what is the true temperature?

3. (4) A thermistor has a resistance of $11.27\text{ k}\Omega$ at 10.0°C and $1.257\text{ k}\Omega$ at 50.0°C . If the thermistor behaves in accord with the simplest theoretical relationship between temperature and resistance, what should its resistance be when the temperature is 30.0°C ?

4. (3) A J-tube experiment (pictured to right) is carried out under a constant atmospheric pressure of 732 torr and a constant temperature of 25°C . Initially (diagram A) a 52.1-cm^3 sample of gas is trapped in the closed end, such that the difference of the mercury column heights on the two sides is $h = 80.0\text{ mm}$. Then additional mercury is added, reducing the volume to 40.0 cm^3 (B). Neglecting temperature corrections for the density of Hg, what is h in B?

B. (16) Pickanose⁻¹.

- (6) Polarimetry is used to study the inversion process for a newly discovered sugar, pickanose. Like sucrose, this sugar changes the sign of its optical rotation as it undergoes acid-catalyzed hydrolysis (*i.e.*, it "inverts").

 - Write the general equation for the time dependence of the rotation $\square(t)$, as a sum of a constant (B) and an exponentially decaying term of initial magnitude A with effective rate constant k_{eff} .
 - Re-express this equation in terms of the rotations \square_0 and \square for $t = 0$ and $t = \text{_____}$, respectively.
 - Suppose the inversion point is reached at time t_{inv} . Obtain an expression for k_{eff} in terms of t_{inv} , \square_0 , and \square (or A and B if you are unsure of your results for \square_0 and \square).
- (4) Initially a 20.0-cm polarimeter tube is charged with a solution of pickanose and $\text{HCl}(aq)$ prepared by mixing 25.0 mL of the stock sugar solution with 15.0 mL of 4.0 M HCl . At the start of the inversion reaction, the measured rotation of the polarimeter is $\square 12.4^\circ$. The specific rotation $[\square]_T^T$ for pickanose is $\square 26.4 \text{ degree dm}^{-1} \text{ mL g}^{-1}$ at the temperature and wavelength used in the experiment. Calculate the initial concentrations in the polarimeter tube, of (a) pickanose, and (b) HCl . [Assume volumes are additive.]
- (4) The reaction is found to reach the inversion point in 23 min; after 15 hours, the rotation is found to be 19.2° . Calculate (a) the effective rate constant k_{eff} and (b) the rate constant k_{H} .
- (2) Having trouble with her error propagation, Honey Sweetwater decides to follow the suggestion in the writeup — to use weighted nonlinear LS fitting in KG to obtain her activation energy and uncertainty from estimates of k_{H} at 22° and 40°C . She finds that KG won't work with just her two points, so she copies each entry line again in the data sheet, giving 4 points total and success with KG. What must she then do to correct her results for the E_a uncertainty, and why?