

Chemistry 236 -- Quiz 1
January 29, 2013 — Statistics and KaleidaGraph Basics

Pledge and signature:

Note: If you want your paper returned folded (i.e., score concealed), please print your name on the back.

1. (2) Consider the number 1.17. If this represents a rounded experimental result, what are its absolute and percent uncertainties? $\pm 0.005, 0.43\%$
2. (3) A pressure is measured to be 654.15 Torr and is estimated to be uncertain by 0.14 %. Using the 10% rule for uncertainties, state this pressure and its uncertainty. $654.2(9)$ Torr
3. (4) Marge Inovera measures 25 values of a quantity y for a range of x values from 0 to 11. When she uses KaleidaGraph to carry out an unweighted fit of these data to a 4th-order polynomial (5 adjustable parameters), she obtains $\text{Chisq} = 0.0015799$. She then repeats the fit using weights and obtains $\text{Chisq} = 1334.45$.
 - a. Calculate Marge's estimated variance and standard deviation in y for the unweighted fit. (Give precision commensurate with the provided information.) $s_y^2 = 7.8995 \times 10^{-5}$, $s_y = 0.0088879$
 - b. In Marge's weighted fit, the s_y values she enters in the column used for weighting are known in only a relative sense. If the fit yields for the error in a , $s_a = 0.00075518$, what is the appropriately adjusted value of this error estimate? $s_a \times (\text{Chisq}/)^{1/2} = 0.0061686$
4. (5) a. If y has uncertainty 0.012, what is the percent uncertainty in $z = e^{3y}$? 3.6%
b. In thermodynamics, the standard Gibbs free energy change for a reaction is related to the equilibrium constant K° by $G^\circ = -RT \ln K^\circ$. If K° is uncertain by 4.0% at $T = 308.15$ K, what is the uncertainty in G° ? [$R = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1}$] $RT s_K/K = 102.5 \text{ J/mol}$
5. (2) A quantity x is uncertain by 1.0% and y is uncertain by 3.0%. Give the % uncertainties for z in each of the following cases:
 - a. $z = \sqrt{5y}$ 1.5%
 - b. $z = 5x^3/y$ $\sqrt{18}\%$
6. (2) A quantity x is uncertain by 1 and y is uncertain by 2. Give the uncertainties for z in each of the following cases:
 - a. $z = -3y$ 6
 - b. $z = 11 + 9x - 4y$ $(145)^{1/2}$
7. (1) Using Formula Entry in KaleidaGraph, you enter $3*2 + 1.0/2*3^2 - 7/2^3$ and press Run. What result do you get? 9.625
8. (2) You want to fit your data to the function $y = ax + b/x^3$. Using a , b , and x to represent the appropriate quantities, write exactly what you must enter in the Define box of the General routine.
 $a*x + b/x^3; a = ... ; b = ...$
9. (4) You have recorded a boatload of data in the P Chem lab and now seek to plot and analyze them using KaleidaGraph. When you "Open" the file, you see:
Precisely what do you select or enter in order to ensure that the resulting KG data sheet will contain all
Delimiter: Tab Number: 1 or >=1 Lines Skipped: 2 Options: Check
10. (2) Give two reasons why Excel cannot (easily) satisfy the data analysis requirements of this course while KaleidaGraph can. (Hint: What are the chief virtues of the General routine?)
In Excel, it is not easy to (1) do nonlinear LS, (2) do wtd fits, and (3) get parameter errors.