

Chemistry 236 -- Quiz 1  
September 10, 2008 — Statistics and KaleidaGraph Basics

**Pledge and signature:**

**Note:** If you want your paper returned folded (i.e., score concealed), please print your name on the back.

1. (2) Consider the number 2. If this represents a rounded experimental result, what are its absolute and percent uncertainties?

0.5 & 25%

2. (3) A pressure is measured to be 654.15 Torr and is estimated to be uncertain by 0.85 %. Using the 10% rule, state this pressure and its uncertainty.

654(6) Torr

3. (5) Marge Inovera measures a quantity 32 times and obtains an average and a sum of squared residuals. If the latter is 489.155,

a. Give Marge's estimated variance, standard deviation, and standard deviation in the mean. (Give precision commensurate with the provided information.)

$$s_y^2 = 15.77919$$

$$s_y = 3.97230$$

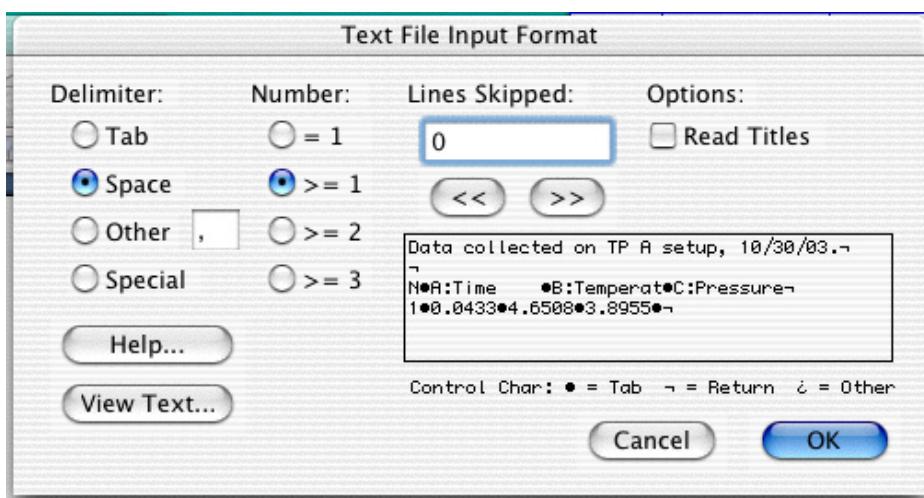
$$s_{\bar{y}} = 0.702211$$

b. Use the 10% rule to restate the latter two values.

4.0 & 0.7

4. (2) State the following quantities unambiguously to 5 significant figures:

a. 12000001


$1.2000 \times 10^7$

b. 66.123500

66.124

5. (4) You have recorded a boatload of data in the P Chem lab and now seek to plot and analyze them using KaleidaGraph. When you "Open" the file, you see:

Precisely what do you select or enter in order to ensure that the resulting KG data sheet will contain all your data, in numerical format, with column headings?



Delimiter: Tab Number: 1 or >=1 Lines Skipped: 2

Options: (Check or don't check?) Check

6. (5) Having Fits. You encountered your first truly nonlinear least-squares fitting problem in Problem Set 3, where you fitted first-order kinetics data to a delining exponential function of time plus a background. The resulting function contained three adjustable parameters.

1. Write the fit relationship in mathematical form. Identify the independent and dependent variables and the adjustable parameters.

$$y = a e^{-bt} + c$$

*t = ind.; y = dep; a, b, c = adjustable*

2. Suppose you carry out the fit by defining the fit relationship in the "Define Fit" box of the **General** fit routine. Write below EXACTLY what you must enter there, using **a**, **b**, and **c** as your adjustable parameters.

$$a * \exp(-b * x) + c; a = \dots; b = \dots; c = \dots \text{ [reasonable initial estimates]}$$

7. (3) Use error propagation to obtain expressions for  $z$  in terms of  $x$  and  $y$ , in each of the following cases: (No other quantities are uncertain.)

$$1. z = \exp(ay) \quad 2. z = y/x \quad 3. z = ax - by$$

$$z = a z - y$$

$$z = z [(x/x)^2 + (y/y)^2]^{1/2}$$

$$z = [a^2 x^2 + b^2 y^2]^{1/2}$$

8. (2) Give two reasons why Excel cannot (easily) satisfy the data analysis requirements of this course while KaleidaGraph can.

The main reasons: 1. Excel does not easily provide uncertainty estimates for adjustable parameters.  
2. Nonlinear LS is not easy to implement in Excel.

I also gave some credit for answers commenting on the ease of preparing good-looking scientific graphs, and the difficulty of doing weighted LS fits in Excel.