

Chemistry 236 -- Quiz 10
November 7, 2007 — Freezing Point Depression

Lab Day ____

Pledge and signature:

Note: If you want your paper returned folded (*i.e.*, score concealed), please print your name on the back.

1. (9) A 10.00-g sample of a weak acid ($M = 76.0$ g/mol) in water is titrated to neutrality with 19.7 mL of 0.122 M NaOH. The freezing point of this mixture is found to be $-0.504\text{ }^{\circ}\text{C}$. Calculate (a) the molality of the acid (from titration), (b) the fraction dissociated α , and (c) the equilibrium constant K_m . [$k_f = 1.860\text{ K kg mol}^{-1}$]
2. (5) A 1.500% solution of CaCl_2 (110.99 g/mol) in water (18.015 g/mol) has a freezing point of $-0.661\text{ }^{\circ}\text{C}$. Calculate (a) the predicted (simple theory) freezing point, (b) the practical osmotic coefficient $\bar{\alpha}$, and (c) the activity a_A .
3. (2) (a) Suppose the freezing point given just above is uncertain by $0.005\text{ }^{\circ}\text{C}$. Assuming that this is the only source of experimental uncertainty, calculate the resulting uncertainty in $\bar{\alpha}$.
(b) Suppose the titration volume in (1) is uncertain by 0.3 mL. Again assuming that this is the only source of uncertainty, calculate the resulting uncertainty in the acid molality.