1. In the reversible reaction, $D - R_1R_2R_3CBr \rightleftharpoons L - R_1R_2R_3CBr$, both the forward and reverse reactions are first order, with the same half-life of 10.0 min. Starting with 1.000 mol of the D-bromide, how much L-bromide will be present after 10.0 min?

2. The gas-phase recombination of halogen atoms is known to be termolecular, $X + X + M \rightleftharpoons X_2 + M$. For $X = I$ and $M = Ar$, one measured value of the rate constant at 293 K is 0.59×10^{16} cm6 mol$^{-2}$ s$^{-1}$.
(a) Convert this value to more standard units of L2 mol$^{-2}$ s$^{-1}$. (b) Gas phase kineticists often work with atomic and molecular concentrations (N/V) instead of molar concentrations (n/V). With volume in cm3, the units for a termolecular rate constant become cm6/s. Obtain this rate constant in these units.