Chemistry 230 -- Quiz 10 (Take-home)
Due November 30, 2001, at noon — Tellinghuisen

Pledge and signature:

1. (3) Mixtures of ethanol and \(n \)-propanol behave ideally. At 36.4˚C their vapor pressures are 108 torr (ethanol) and 40.0 torr.
 (a) A certain mixture boils at 36.4˚C and 72.0 torr. What are the compositions of the liquid and gaseous solutions present at equilibrium under these conditions?
 (b) 1.50 mol of ethanol is mixed with 2.50 mol \(n \)-propanol at this \(T \). Calculate (i) the vapor pressure of the solution, and (ii) \(\Delta G_{\text{mix}} \), \(\Delta S_{\text{mix}} \), and \(\Delta H_{\text{mix}} \) for the preparation of this solution.

2. (3) The Henry's law constant for \(O_2 \) in water at 25˚C is 773 atm mol\(^{-1} \) kg. Calculate (a) the solubility \((m) \) of \(O_2 \) in water at \(P = 1.00 \) atm and 25˚C, and (b) \(\Delta G_{f,298}^\circ \) for \(O_2(aq) \) (using the molality-based reference state).

3. (3) A regular binary solution is characterized by the following expressions for the chemical potentials:
 \[\mu_A = \mu_A^* + RT \ln x_A + w x_B^2; \quad \mu_B = \mu_B^* + RT \ln x_B + w x_A^2. \]
 (a) Obtain expressions for the activity coefficients \(\gamma_{IA} \) and \(\gamma_{IB} \) for such a solution.
 (b) Assuming that \(w \) is independent of \(T \), obtain expressions for \(\Delta G_{\text{mix}} \), \(\Delta S_{\text{mix}} \), \(\Delta H_{\text{mix}} \), and \(\Delta V_{\text{mix}} \) for such a solution.

4. (6) At 387.5˚C the vapor pressures of K and Hg are 3.25 torr and 1280 torr, respectively. Measurements of the vapor pressures of potassium amalgams at this \(T \) yield the following results:

 \[\begin{array}{cccccc}
 \text{mol % K} & 41.1 & 46.8 & 50.0 & 56.1 & 63.0 & 72.0 \\
 P_{\text{Hg}}(\text{torr}) & 31.87 & 17.3 & 13.0 & 9.11 & 6.53 & 3.70 \\
 P_{\text{K}}(\text{torr}) & 0.348 & 0.68 & 1.07 & 1.69 & 2.26 & 2.95 \\
 \end{array} \]
 (a) Calculate the Convention I activity coefficients for both components and plot them vs. composition in the range studied.
 (b) Calculate the molar excess Gibbs energy \(G^E/n \) for the amalgam over this same range and plot it also. (Hint: See Section 10.2 of Levine and Figure 10.1.)
 (c) Comment on the nature of the deviations from ideality for K/Hg solutions in this composition range.

5. (6) At 25˚C a saturated solution of sucrose in water has a density of 1.330 g/cm\(^3 \), while that of water is 0.99707 gm/cm\(^3 \). This solution has a molality \(m = 6.05 \) m\(^{-1} \) and activity coefficient \(\gamma_m = 2.87 \).
 (a) For this saturated solution, calculate \(a_m \), \(\gamma_{II} \), and \(a_{II} \). (Hint: See Problem 10.10 in Levine.)
 (b) Determine \(\Delta G_{f,298}^\circ \) for sucrose \((aq) \) on the molality scale [Hint: How are \(\mu(\text{sucrose},aq) \) and \(\mu(\text{sucrose},s) \) related in the saturated solution?]?
 (c) Calculate \(\Delta G_{f,298}^\circ \) for sucrose \((aq) \) on the Convention II mole fraction scale.
 (d) Use results from problem 10.12 in Levine to determine \(\gamma_c \) and \(a_c \) for this same solution. Compare your results with Fig. 10.7.

6. (5) The enthalpy of mixing for dissolving \(m \) moles of NaCl in 1.000 kg of water at 25˚C is given by
 \[\Delta H_{\text{mix}} = 3.861 m + 1.992 m^{3/2} - 3.038 m^2 + 1.019 m^{5/2}. \]
 Calculate (a) \(\Delta H_{\text{int},NaCl} \) for forming a 2.00 m\(^{-1} \) solution, (b) \(\Delta H_{\text{int},NaCl}^\infty \), (c) \(\Delta H \) for diluting a solution containing 1.000 mol NaCl from a concentration of 2.00 m\(^{-1} \) to 0.100 m\(^{-1} \), (d) \(\Delta H_{\text{diff},NaCl} \) at 2.00 m\(^{-1} \), and (e) \(\Delta H_{\text{diff},H_2O} \) at 2.00 m\(^{-1} \).