1. Use data in the Appendix to calculate the conventional chemical potential for NH$_3$(g) at 325 K and 2.65 bar pressure. [Use the convention that $H^\circ_{\text{m,298}}$ \equiv 0.0 for elements in their standard states at 25°C.]

2. Consider the reaction, CO(g) + $\frac{1}{2}$ O$_2$(g) \rightarrow CO$_2$(g). (a) Use data in the Appendix and the expression for ΔH° found in Section 5.5 to obtain an expression for ln K°_T(T) valid from 300 to 2000 K. (b) Use this expression to calculate K°_T at 1500 K.

3. Many reactions involve dissociation of a starting substance into products. The simplest case is $\text{A(g)} \leftrightarrow 2 \text{B(g)}$

If we start with n_0 of A, we define the degree of dissociation α as that fraction of n_0 that has dissociated when equilibrium is reached. Obtain an expression for α as a function of K°_T and P.

Dissociation reactions are almost always endothermic. How will changes in P and T affect α?

4. Do Problem 6.9, except make the temperature 500 K, and do not neglect the T-dependence of ΔH°. Also, calculate the degree of dissociation α under conditions where (a) the total pressure is maintained at 0.900 bar, and (b) where the pressure would be 0.900 bar if the gas remained entirely PCl$_5$, but where the volume is held constant (thus yielding increased P at equilibrium). [Hint: The T-dependence of ΔH° can be accommodated through Eq. 5.18, as discussed on p. 172. For the α calculations, you may need to re-express α for the reaction, $\text{A(g)} \leftrightarrow \text{B(g)} + \text{C(g)}$, since this form is appropriate for the PCl$_5$ dissociation.]

5. Problem 6.44 in Levine. (d) Also calculate K°_T for the reaction at 500 K and determine the equilibrium pressures of the three gases. (e) Then verify that these values indeed minimize G for the reaction.

6. Repeat the previous problem, but now hold the volume constant, and calculate the Helmholz free energy A as a function of ξ. For comparison with the previous results, make the initial pressure 4.00 bar (as in problem 6.44). Determine the equilibrium pressures and verify that these minimize A for the reaction.