

Summary of Nucleophilic Substitution Reactions

	S_N1	S_N2
Mechanism	Two Steps $R-L \longrightarrow R^+ \xrightarrow{Nu:} R-Nu$	One Step $R-L + Nu: \longrightarrow R-Nu$
Kinetics	1st order (unimolecular) rate= $k[R-L]$ Ionization= rate determining step (1st step), 2nd step does not effect the rate	2nd Order (bimolecular) rate= $k[R-L] [Nu:]$
Stereochemistry	Racemization	Inversion
Carbon (sp^3) Electrophile	Favored by electrophiles which can best stabilize a carbocation. $3^\circ > \text{benzylic} \sim \text{allylic} \sim 2^\circ >> 1^\circ$	Steric hinderance controlled $CH_3 > 1^\circ > 2^\circ \quad (3^\circ = \text{no reaction})$
Nucleophile	Nature of the nucleophile has no effect on rate	Favored by better nucleophiles $RS^- > NC^- > I^- > RO^- > HO^- > Cl^-$
Leaving Groups	Favored by better leaving groups $-N_2 > -OTos > -I > -Br > -Cl > -OH_2$	Favored by better leaving groups $-N_2 > -OTos > -I > -Br > -Cl >$
Solvent Effect	Favored by polar, ionizing solvents. Solvolysis: polar protic (H- bonding) solvents act as the nucleophile $H_2O > H_2O/ROH \text{ (mixed solvent)} > ROH$	Favored by polar aprotic solvents. $HMPA > CH_3CN > DMF > DMSO > THF$ Disfavored by polar protic (H-bonding) solvents
Competative Reactions	Elimination (E1) Rearrangements	Elimination (E2) by strongly basic nucleophiles