

Alkyne Nomenclature

Systematic Nomenclature (IUPAC System)

Prefix-Parent-Suffix

Naming Alkynes

Suffix: -yne

Many of the same rules for alkanes apply to alkenes

- 1. Number the carbon chain from the end of the carbon nearest the triple bond
- 2. The alkyne position is indicated by the number of the alkyne carbon in the chain
- 3. Compounds with two triple bonds are referred to as diynes, three triple bonds as triynes, etc

Preparation of Alkynes

a. Elimination reactions of 1,2-dihalides

Recall:
$$\underset{R_1}{\overset{X}{\longleftarrow}} \underset{R_2}{\overset{R_3}{\longleftarrow}} \underset{H}{\overset{KOH}{\longrightarrow}} \underset{R_2}{\overset{R_1}{\longrightarrow}} \underset{R_2}{\overset{R_3}{\longrightarrow}} \underset{H}{\overset{HOH}{\longrightarrow}} \underset{KX}{\overset{KOH}{\longrightarrow}} \underset{R_2}{\overset{R_3}{\longrightarrow}} \underset{H}{\overset{KOH}{\longrightarrow}} \underset{R_2}{\overset{R_3}{\longrightarrow}} \underset{H}{\overset{R_3}{\longrightarrow}} \underset{H}{\overset{KOH}{\longrightarrow}} \underset{R_2}{\overset{R_3}{\longrightarrow}} \underset{H}{\overset{KOH}{\longrightarrow}} \underset{R_2}{\overset{R_3}{\longrightarrow}} \underset{H}{\overset{R_3}{\longrightarrow}} \underset{H}{\overset{R_3}{\longrightarrow}} \underset{H}{\overset{KOH}{\longrightarrow}} \underset{R_2}{\overset{R_3}{\longrightarrow}} \underset{H}{\overset{R_3}{\longrightarrow}} \underset{H}{\overset{R}{\longrightarrow}} \underset{H}{\overset{$$

b. From other alkynes. Section 8.8 - 8.10

alkynes

 $B_1 = H$ Terminal Alkyne: triple bond is at the end

of the carbon chain

 $R_1 - R_2$ Internal Alkyne: triple bond is not at the

end of the carbon chain

Reactions of Alkynes:

Addition of HX- Markovnikov addition

only useful if $R_1 = R_2$ or if $R_2 = H$

Addition of
$$X_2$$

$$R_1-C\equiv C-R_2 \xrightarrow{X_2} R_1 \xrightarrow{X} C \xrightarrow{C} R_2 \xrightarrow{X_2} R_1 \xrightarrow{X} X$$

$$\text{trans addition} \text{ of } X_2$$

$$R-C \equiv C-H$$

$$\xrightarrow{HX}$$

$$R \xrightarrow{C} C \xrightarrow{H}$$

$$Vacant p orbital$$

A 2° vinylic carbocation

Vinyl carbocations are generally less stable than the corresponding alkyl carbocation

Carbocation Stability

Hydration of Alkenes

Mercury (II) Catalyzed Hydration: similar to oxymercuration - Markovnikov Addition

$$R-C \equiv C-H$$

$$\xrightarrow{HgSO_4, H_3O^+}$$

$$\xrightarrow{R}$$

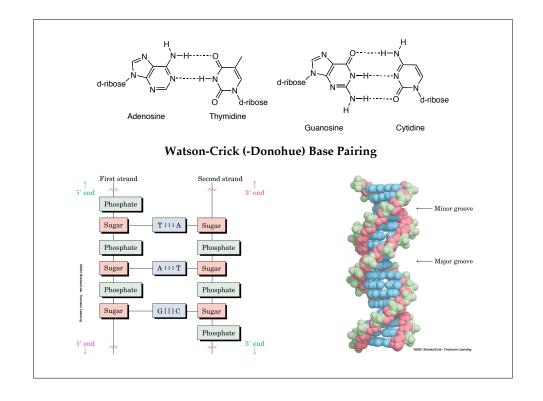
$$CH_3$$

$$\text{methyl ketone}$$

$$R_1-C \equiv C-R_2$$

$$\xrightarrow{HgSO_4, H_3O^+}$$

$$R_1$$


$$R_1$$

$$R_2$$

Keto-enol tauromerization

tautomer: constitutional isomers that interconvert

□H° = -104 KJ/mol

Hydroboration of Alkynes

$$R-C \equiv C-H$$

$$\begin{array}{c}
1) \text{ BH}_3, \text{ THF} \\
2) \text{ H}_2\text{O}_2, \text{ NaOH} \\
& \text{aldehyde}
\end{array}$$

$$R_1-C \equiv C-R_2$$

$$\begin{array}{c}
1) \text{ BH}_3, \text{ THF} \\
2) \text{ H}_2\text{O}_2, \text{ NaOH} \\
& \text{R}_1
\end{array}$$

$$R_1 = R_2$$

$$R_1 = R_2$$

$$R_2 = R_1$$

$$R_2 = R_2$$

$$R_3 = R_2$$

$$R_4 = R_1$$

$$R_2 = R_3$$

$$R_3 = R_4$$

$$R_4 = R_4$$

$$R_4 = R_4$$

$$R_4 = R_4$$

$$R_5 = R_4$$

$$R_6 = R_4$$

$$R_7 = R_6$$

$$R_8 = R_6$$

$$R_8 = R_8$$

Hydrogenation of Alkynes

H-C=C-H

$$H_2$$
, catalyst

 H_2 , catalyst

 H_3
 H_4
 H_4

The second []-bond of an alkyne is slightly more reactive toward hydrogention

Under normal hydrogenation conditions, hydrogenation of an alkyne *can not* be stopped at the alkene stage

$$R_1-C \equiv C-R_2 \xrightarrow{H_2, Pd} \begin{bmatrix} H & H \\ C=C \\ R_1 & R_2 \end{bmatrix} \xrightarrow{H_2, Pd} R_1 \xrightarrow{H & H \\ I & I \\ I & I \\ H & H \end{bmatrix}$$

Lindlar's catalyst: "poisoned" palladium catalyst Pd on CaCO₃ + Pb(OAc)₄ + quinoline (amine)

> "poisons" reduce the catalysts activity so only the most reactive functional groups are hydrogenated

Reaction can be stopped at the cis-alkene stage

Dissolving Metal Reduction:

Li(0) metal in liquid ammonia (NH₃)
Li(0) in NH₃
$$\longrightarrow$$
 e • (solvated electron)

$$R_1-C\equiv C-R_2$$
 $\xrightarrow{\text{Li, NH}_3, (CH_3)_3COH}$ $\xrightarrow{\text{H}}$ $C=C$ $\xrightarrow{R_2}$ trans-alkene

Oxidative cleavage of alkenes (sect. 7.8):

Oxidative Cleavage of Alkynes (sect.8.7)

Alkynes are less reactive toward oxidative cleavage than alkenes. Alkenes can be oxidatively cleaved in the presence of alkynes

Acidity of Terminal Alkynes

R-C=C-H + NaNH₂
$$\rightarrow$$
 R-C=C: + NH₃ Na + (pKa = 35)

$$C = C$$
 $C = C$
 $C =$

Alkylation of the acetylide anion: formation of C-C bonds a substitution reaction between a nucleophile and alkyl halide

Acetylide anions are strong nucleophiles and will undergo substitution reactions with alkyl halides

The acetylide anion displaces bromide from the alkyl bromide forming a new C-C bond.

Alkylation is a general method of making alkynes from simpler alkynes.

Alkylation of acetylide anions is generally limited to primary alkyl bromides and iodide

Organic Synthesis

Synthesis: making larger, more complex molecules out of smaller ones using known and reliable reactions

Prepare octane from 1-pentyne

$$\begin{array}{c} \text{a) NaNH}_2 \\ \text{b) CH}_3\text{CH}_2\text{CH}_2\text{C} \\ \hline \\ \text{H}_3\text{CH}_2\text{CH}_2\text{C} - \text{C} \equiv \text{C} - \text{CH}_2\text{CH}_2\text{CH}_2 \\ \hline \end{array} \qquad \begin{array}{c} \text{H}_2, \text{Pd} \\ \hline \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \\ \hline \\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \\ \hline \end{array}$$

Prepare Z-2-butene from 1-pentyne

work the problem backwards