Chapter 4: Stereochemistry of Alkanes and Cycloalkanes

Stereochemistry: three-dimensional aspects of molecules
Conformation: different geometric arrangements of atoms that result from rotations about single (\square) bonds

Conformer: a specific conformation of a molecule

Torsional Strain: strain (increase in energy) due to eclipsing groups

Steric Strain: repulsive interaction that occurs when two groups are closer than their atomic radii allow

@2001 Brooks/Cole - Thomson Learning

Strain Energy of Alkane Conformations

$\mathrm{H}-\mathrm{H}$ eclipsed	$4.0 \mathrm{KJ} / \mathrm{mol}$	torsional strain
$\mathrm{H}-\mathrm{CH}_{3}$ eclipsed	$6.0 \mathrm{KJ} / \mathrm{mol}$	mostly torsional strain
$\mathrm{CH}_{3}-\mathrm{CH}_{3}$ eclipsed	$11 \mathrm{KJ} / \mathrm{mol}$	torsional and steric strain
$\mathrm{CH}_{3}-\mathrm{CH}_{3}$ gauche	$3.8 \mathrm{KJ} / \mathrm{mol}$	steric strain

Torsional Strain: strain (increase in energy) due to eclipsing groups Steric Strain: repulsive interaction that occurs when two groups are closer than their atomic radii allow

Baeyer Strain Theory

Angle Strain: strain due to deforming a bond angle from its ideal value

Heats of Combustion of Cycloalkane:
the more strain a compound is, the more heat it released upon combustion

cycloalkane
(can be measured)
$\begin{gathered}\text { Total Strain } \\ \text { Energy }\end{gathered}=\left(\binom{\right.$ Sample }{$\square \mathrm{H}_{\mathrm{comb}}$ per $-\mathrm{CH}_{2^{-}}}-\binom{$Reference }{$\square \mathrm{H}_{\mathrm{comb}}$ per $\left.-\mathrm{CH}_{2^{-}}}\right) \cdot \mathrm{n}$

Cyclopropane: flat

Total of $6 \mathrm{H}-\mathrm{H}$ eclipsing interactions

Cyclobutane: puckered

(c) Not quite

Puckering of cyclobutane increases angle strain but partially relieves torsional strain
Cyclopentane

Cyclohexane: strain free, favored conformation is a chair Chair cyclohexane has two types of hydrogens:
axial: C-H axis is "perpendicular" to the "plane of the ring"
equatorial: C-H axis is "parallel" to the "plane of the ring"
Chair cyclohexane has two faces; each face has alternating axial and equatorial -H's

Chair cyclohexane

top

bottom

All -H/-H interactions are staggered
No torsional strain
No angle strain

Chair-Chair Interconversion (ring flip): $45 \mathrm{KJ} / \mathrm{mol}$

Ring flip interchanges the axial and equatorial positions

Energy Profile for the Chair-Chair Interconversion of Cyclohexane

http://www2.chem.ucalgary.ca/Flash/cyclohexane.html

Boat cyclohexane ($29 \mathrm{KJ} / \mathrm{mol}$ higher than chair)
no angle strain, considerable torsional strain, some steric strain

Twist-boat cyclohexane ($23 \mathrm{KJ} / \mathrm{mol}$ higher than chair)
some torsional and steric strain relieved from the boat or half chair conformation.

Conformation of Substituted Cyclohexanes

The axial position is more sterically hindered due to steric strain

Two gauche butane interactions

Gauche butane ($3.8 \mathrm{~kJ} / \mathrm{mol}$ strain)

$\rightarrow-$

Axial
methylcyclohexane ($7.6 \mathrm{~kJ} / \mathrm{mol}$ strain)

Two "gauche butane" interactions for axial methylcyclohexane $2 \times 3.8=7.6 \mathrm{KJ} / \mathrm{mol}$

Ring-clip exchanges the equatorial and axial positions of cyclohexane an equatorial substituent become axial upon a ring-flip
Axial position is more sterically congested and is therefore less favored thermodynamically
The equilibrium constant is related to the energy difference by:
$\square \mathrm{E}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{eq}}$
for $\mathrm{R}=\mathrm{CH}_{3}$, $\square \mathrm{E}$ is $7.6 \mathrm{KJ} / \mathrm{mol}$
$\mathrm{R}=8.3 \times 10^{-3} \mathrm{KJ} / \mathrm{mol}, \mathrm{T}=300^{\circ} \mathrm{K}$ (room temp)
$\mathrm{K}_{\mathrm{eq}}=0.048 \quad 95.4 \%$ equatorial and 4.6% axial at room temp

Substituent	per 1,3-diaxial interaction (KJ/mol)	total strain energy (A-value)	y eq./axial
-F	0.5	1.0	60:40
--C1	1.4	2.8	70:30
-Br	1.4	2.8	70:30
-I	0.85	1.7	65:34
-OH	2.1	4.2	85:15
$-\mathrm{NH}_{2}$	2.7	5.4	90:10
-N(CH3) ${ }_{2}$	4.4	8.8	97:3
$-\mathrm{CH}_{3}$	3.8	7.6	95:5
$-\mathrm{CH}_{2} \mathrm{CH}_{3}$	4.0	8.0	96:4
$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	4.6	9.2	96:4
- $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	>8	16 >	>> 99.9:0.1
$-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	4.2	8.4	97:3
$-\mathrm{C}_{6} \mathrm{H}_{5}$	6.3	12.6	99.5:0.5
$\mathrm{CO}_{2} \mathrm{H}$	2.9	5.8	92:8
-CN	0.4	0.8	60:40

Disubstituted Cyclohexanes

relative stereochemistry: i.e, cis or trans

1,2-dimethylcyclohexane: two stereoisomers

(two equatorial)
trans
two axial)

For cis-1,2-dimethylcyclohexane

$\{2 \times 3.8)+3.8=11.4 \mathrm{KJ} / \mathrm{mol}$
For trans-1,2-dimethylcyclohexane

1,3-disubstituted 1,4-disubstituted			
 cis (two equatorial) cis (two axial)			 trans (two equatorial) trans (two axial)

Polycyclic molecules

Cis- and trans-decalin are stereoisomers, they do not interconvert into each other

Cholesterol

Camphor

Bicyclo[2.2.1]heptane

Drawing Structures

CYCLIC ALKANES: Substituents on a cyclic alkane can be either cis or trans to each other. You should draw the ring in the plane of the paper (solid lines) and use dashes and wedges to show whether substitutents are above or below the plane of the ring.
correct \because

cis

incorrect \because

On occasion you may wish to distinguish the faces of a cycloalkane.

CYCLOHEXANE: For cyclohexanes you may be asked to draw a chair, in which case all substituents must be either axial or equatorial. The following is the correct way to draw chair cyclohexane. Note how the axial and equatorial substituents off each carbon are represented.

Disubstituted chair cyclohexanes:

