

Strain I	Energy of Alka	ne Conformations						
H - H eclipsed H - CH ₃ eclipsed CH ₃ - CH ₃ eclipsed CH ₃ - CH ₃ gauche	4.0 KJ/mol 6.0 KJ/mol 11 KJ/mol 3.8 KJ/mol	torsional strain mostly torsional strain torsional and steric strain steric strain						
Torsional Strain: strain (increase in energy) due to eclipsing groups Steric Strain: repulsive interaction that occurs when two groups are closer than their atomic radii allow								

Figure 4.8 (page 122)				
	<u>Cycloalkane</u> <u>Rin</u>	<u>g Size (n)</u>	∆H KJ/mol	ΔH _{comp} per -CH ₂ - <u>KJ/mol</u>	Total Strain <u>Energy</u>
Strain rings	\bigtriangleup	3	2090	698	115
		4	2744	686	110
Common rings {	\bigcirc	5	3220	664	27
	\bigcirc	6	3952	659	0
	\bigcirc	7	4637	662	27
Medium rings	\bigcirc	8	5310	664	42
	Cyclononane	9	5981	665	54
< 12 Large rings	Cyclodecane	10	6636	664	50
	Cyclopentadecane	15	9985	659	0
	Alkane reference			659	0

F		H	
Substituent	per 1,3-diaxial interaction (KJ/mol)	total strain energ (A-value)	y eq./axial
-F	0.5	1.0	60:40
-Cl	1.4	2.8	70:30
-Br	1.4	2.8	70:30
-I	0.85	1.7	65:34
-OH	2.1	4.2	85:15
-NH ₂	2.7	5.4	90:10
$-N(CH_3)_2$	4.4	8.8	97:3
-CH ₃	3.8	7.6	95:5
-CH ₂ CH ₃	4.0	8.0	96:4
$-CH(CH_3)_2$	4.6	9.2	96:4
$-C(CH_3)_3^{3/2}$	> 8	16	>> 99.9:0.1
-CH ₂ C(CH ₂) ₃	4.2	8.4	97:3
$-C_6\tilde{H_5}$	6.3	12.6	99.5:0.5
CŎ,Ĥ	2.9	5.8	92:8
-CN	0.4	0.8	60.40

Drawing Structures

<u>CYCLIC ALKANES</u>: Substituents on a cyclic alkane can be either *cis* or *trans* to each other. You should draw the ring in the plane of the paper (solid lines) and use dashes and wedges to show whether substitutents are above or below the plane of the ring.

