228

Tautomers: isomers, usually related by a proton transfer, that are in equilibrium Keto-enol tautomeric equilibrium lies heavily in favor of the keto form. enol C=C $\Delta H^{\circ} = 611 \text{ KJ/mol}$ C=O $\Delta H^{\circ} = 735 \text{ KJ/mol}$ C-O C-C 380 376 О-Н 436 С-Н 420 $\Delta H^{\circ} = -104 \text{ KJ/mol}$ 0.000 1% 0.000 000 1% 99.999 9% 99.999 999 9% Cyclohexanone
© 2004 Thomson/Brooks Cole Acetone 229 Keto-enol tautomerism is catalyzed by both acid and base

Acid-catalyzed mechanism (Figure 22.1):

Base-catalyzed mechanism (Figure 22.2):

The carbonyl significantly increases the acidity of the α -protons

230

22.2: Reactivity of Enols: The Mechanism of Alpha-Substitution Reactions

General mechanism for acid-catalzyed α -substitution of carbonyls (Figure 22.3)

22.3: Alpha Halogenation of Aldehydes and Ketones an α -proton of aldehydes and ketones can be replaced with a -Cl, -Br, or -I (-X) through the acid-catalyzed reaction with Cl₂, Br₂, or I₂, (X₂) respectively.

$$\begin{array}{c}
0 \\
C \\
C
\end{array}$$

$$\begin{array}{c}
X_2, H^+ \\
X = Cl. Br. I
\end{array}$$

Mechanism of the acid-catalyzed α -halogenation (Fig. 22.4)

Rate= *k* [ketone/aldehyde] [H⁺] rate dependent on enol formation

232

 α,β -unsaturated ketones and aldehydes: α -bromination followed by elimination

$$\begin{array}{c|c} O & CH_3 & Br_2, CH_3CO_2H \\ \hline \\ & & E_2 \\ \end{array} \begin{array}{c} CH_3 & (H_3C)_3CO^{-}K^{+} \\ \hline \\ & E_2 \\ \end{array}$$

Why is one enol favored over the other?

22.4: Alpha Bromination of Carboxylic Acids:
The Hell–Volhard–Zelinskii (HVZ) Reaction

 $\alpha\text{-bromination of a carboxylic acid}$

Mechanism (p. 828, please read)

α -bromo carboxylic acids, esters, and amides

$$\begin{array}{c} O \\ O \\ O \\ H \end{array}$$

α,β -unsaturated ketones and aldehydes:

 $\boldsymbol{\alpha}$ -bromination followed by elimination

$$\begin{array}{c|c} O & CH_3 & Br_2, CH_3CO_2H \\ \hline & & & & \\ \hline & & & \\ \end{array} \begin{array}{c} CH_3 & (H_3C)_3CO^{-}K^{+} \\ \hline & & \\ \hline & E_2 \\ \hline \end{array}$$

Why is one enol favored over the other?

22.4: Alpha Bromination of Carboxylic Acids:

The Hell-Volhard-Zelinskii (HVZ) Reaction

 α -bromination of a carboxylic acid

22.5: Acidity of Alpha Hydrogen Atoms: Enolate Ion Formation Base induced enolate formation

$$\begin{array}{c} O \\ O \\ O \\ O \\ O \end{array}$$

$$\begin{array}{c} O \\ O \\ O \\ O \\ O \end{array}$$

$$\begin{array}{c} O \\ O \\ O \\ O \\ O \end{array}$$

The negative charge of the enolate ion (the conjugate base of the aldehyde or ketone) is stabilized by delocalization onto the oxygen

Base induced enolate formation

Lithium diisopropylamide (LDA): a very strong base

LDA is used to generate enolate ions from carbonyl by abstraction of α -protons

 α -deprotonation of a carbonyl compound by LDA occurs rapidly in THF at -78° C.

Typical pK_a's of carbonyl compounds (α -protons):

aldehydes 17 ketones esters amides nitriles 25

238

239

Acidity of 1,3-dicarbonyl compounds

Why is Meldrum's acid more acidic than other dicarbonyl compounds?

Delocalization of the negative charge over two carbonyl groups dramatically increases the acidity of the α -protons

Enolate formation for a 1,3-dicarbonyl is very favorable

22.6: Reactivity of enolate ions

By treating carbonyl compounds with a strong base such as LDA, quantitative α -deprotonation occurs to give an enolate ion.

Enolate ions are much more reactive toward electrophiles than enols.

Enolates can react with electrophiles at two potential sites

241

22.7 Halogenation of Enolate Ions: The Haloform Reaction Carbonyls undergo α -halogenation through base promoted enolate formation

Base promoted α -halogenation carbonyls is difficult to control because the product is more acidic than the starting material; mono-, di- and tri-halogenated products are often produced

Haloform reaction:

lodoform reaction: chemical tests for a methyl ketone

$$\bigcap_{\substack{R \\ C \\ CH_3}} \underbrace{ \underbrace{NaOH, H_2O}_{I_2} } \bigcap_{\substack{R \\ C \\ O}} \bigcap_{\substack{+ \\ B \\ O}} \bigcap_{\substack{1odoform}} \\ + \underbrace{HCI_3}_{Iodoform}$$
 lodoform: bright yellow precipitate

243

22.8 Alkylation of Enolate Ions

Enolates react with alkyl halides (and tosylates) to form a new C-C bond (alkylation reaction)

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array}$$

Reactivity of alkyl halides toward $S_N 2$ alkylation:

Tertiary, vinyl and aryl halides and tosylates do \underline{not} participate in $S_N 2$ reactions

244

Malonic Ester Synthesis overall reaction

 $pK_a = 13$

 $pK_a = 25$

A malonic ester can undergo one or two alkylations to give an α -substituted or α -disubstituted malonic ester

Decarboxylation: Treatment of a malonic ester with acid and heat results in hydrolysis to the malonic acid (β -di-acid). An acid group that is β to a carbonyl will lose CO_2 upon heating.

246

Mechanism of decarboxylation:

β-dicarboxylic acid (malonic acid synthesis)

β-keto carboxylic acid (acetoacetic ester synthesis)

H CO₂Et + H₃CH₂CH₂CH₂C-Br EtO⁻ Na⁺, EtOH H₃CH₂CH₂CH₂C CO₂Et HCl,
$$\Delta$$
 H₃CH₂CH₂CH₂CH₂C-H₂CCO₂H HCl, Δ H₃CH₂CH₂CH₂CH₂C-H₂CCO₂H HCl, Δ H₃CH₂CH₂CH₂C-Br EtO⁻ Na⁺, EtOH H₃CH₂CH₂C-Br HCl, Δ H₃CH₂C-H₂C-Br HCl, Δ H₃CH₂C-H₂C-H₂C-Br HCl, Δ H₃CH₂C-H

An acetoacetic ester can undergo one or two alkylations to give an α -substituted or α -disubstituted acetoacetic ester

Decarboxylation: Treatment of the acetoacetic ester with acid and heat results in hydrolysis to the acetoacetic acid (β -keto acid), which undegoes decarboxylation

Summary:

Malonic ester synthesis: equivalent to the alkylation of a carboxylic (acetic) acid enolate

$$\begin{array}{c} \text{CO}_2\text{Et} \\ \text{CO}_2\text{Et} \end{array} \begin{array}{c} + \text{ RH}_2\text{C-X} & \underbrace{\text{EtO}^- \text{ Na}^+, \text{EtOH}}_{\text{then HCI, }\Delta} \\ & \\ & \left(\text{H}_3\text{C-CO}_2\text{H} \xrightarrow{\text{base}} \overset{\text{O}^-}{\text{H}_2\text{C}^+\text{C}} \xrightarrow{\text{RH}_2\text{C-CH}_2\text{-CO}_2\text{H}} \\ \end{array} \right) \end{array}$$

Acetoacetic ester synthesis: equivalent to the alkylation of an acetone enolate

Direct alkylation of ketones, esters and nitriles

 $\alpha\text{-}\bar{\text{D}}\text{e}\text{protonation}$ of ketones, esters and nitriles can be accomplished with a strong bases such as lithium diisopropylamide (LDA) in an aprotic solvent such as THF. The resulting enolate is then reacted with alkyl halides to give the $\alpha\text{-substitution}$ product.