Chapter 19: Carboxylic Acids

- 19.1: Carboxylic Acid Nomenclature (please read)
- 19.2: Structure and Bonding (please read)
- **19.3: Physical Properties.** The carboxylic acid functional group contains both a hydrogen bond donor (-OH) and a hydrogen bond acceptor (C=O).

Carboxylic acids exist as hydrogen bonded dimers.

147

19.4: Acidity of Carboxylic Acids. The pK_a of carboxylic acids typically \sim 5. They are significantly more acidic than water or alcohols.

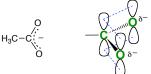
Bronsted Acidity (Ch. 1.13): Carboxylic acids transfer a proton to water to give H₃O⁺ and carboxylate anions, RCO₂⁻

$$K_{a} = \frac{[RCO_{2}^{-1}][H_{3}O^{+}]}{[RCO_{2}H]} \qquad pK_{a} = -\log K_{a}$$

$$typically \sim 10^{-5} \qquad typically \sim 5 \text{ for carboxylic acid}$$

$$CH_{3}CH_{3} \qquad CH_{3}CH_{2}OH \qquad PhOH \qquad CH_{3}CO_{2}H \qquad HCI$$

$$pK_{a} \sim 50-60 \qquad 16 \qquad 10 \qquad 4.7 \qquad -7$$


$$Increasing acidity \longrightarrow 148$$

$$H_3C-H_2C-OH$$
 + H_2O $\xrightarrow{pK_a \sim 16-18}$ $H_3C-H_2C-O^-$ + H_3O^+ \longrightarrow OH + H_2O $\xrightarrow{pK_a \sim 10}$ OH + OH

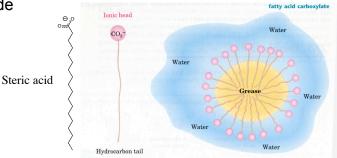
The greater acidity of carboxylic acids is attributed to greater stabilization of carboxylate ion by:

a. Inductive effect of the C=O group

b. Resonance stabilization of the carboxylate ion

4 π -electrons delocalized over three p-prbitals

C-O bond length of a carboxylates are the same


149

19.5: Salts of Carboxylic Acids. Carboxylic acids react with base to give carboxylate salts.

$$pK_a$$
 5 pK_a (stronger base) pK_a (weaker base) (weaker acid)

Detergents and Micelles: substances with polar (hydrophilic) head groups and hydrophobic tail groups form aggregates in Water with the carboxylate groups on the outside and nonpolar

19.6: Substituents and Acid Strength. Substituents on the α -carbon influence the p K_a of carboxylic acids largely through inductive effects. Electron-withdrawing groups increase the acidity (lower p K_a) and electron-donating groups decrease the acidity (higher p K_a). (see table 19.2, p. 800)

$$pK_{a} = 4.7 \qquad 2.9 \qquad 1.3 \qquad 0.9$$

$$pK_{a} = 4.7 \qquad 1.3 \qquad 0.9$$

$$pK_{a} = 4.7 \qquad 1.3 \qquad 0.9$$

$$pK_{a} = 4.9 \qquad 5.1 \qquad 4.8 \qquad 4.9 \qquad 4.7$$

Inductive effects work through $\sigma\text{-bonds},$ and the effect falls off dramatically with distance

$$pK_a$$
 4.9 4.5 4.1 2.8

19.7: Ionization of Substituted Benzoic Acids. The charge of the carboxylate ion cannot be delocalize into the aromatic ring. Electron-donating groups decrease the acidity. Electronwithdrawing groups increase the acidity. (Table 19.3, p. 802)

19.8: Dicarboxylic Acids. one carboxyl group acts as an electron-withdrawing group toward the other and lowers its pKa; effect decreases with increasing separation

Oxalic acid (n= 0)	$pK_{a1} = 1.2$	$pK_{a2} = 4.2$
Malonic acid (n= 1)	2.8	5.7
Succinic acid (n=2)	4.2	5.6
Glutaric acid (n=3)	4.3	5.7
Adipic acid (n=4)	4.4	5.4
Pimelic acid (n=5)	4.7	5.6

19.9: Carbonic Acid (please read)

$$O=C=O + H_2O \xrightarrow{\begin{array}{c} O \\ HO-C-OH \end{array}} + H_2O \xrightarrow{\begin{array}{c} pK_{a1} \\ \sim 6.4 \end{array}} - O \xrightarrow{\begin{array}{c} O \\ -O-C-OH \end{array}} + H_2O \xrightarrow{\begin{array}{c} pK_{a2} \\ \sim 10.2 \end{array}} - O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + H_2O \xrightarrow{\begin{array}{c} PK_{a2} \\ \sim 10.2 \end{array}} - O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + H_2O \xrightarrow{\begin{array}{c} PK_{a2} \\ \sim 10.2 \end{array}} - O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O \\ -O-C-O-O \\ + H_3O \end{array}} + O \xrightarrow{\begin{array}{c} O$$

19.10: Sources of Carboxylic Acids. Summary of reaction from previous chapters that yield carboxylic acids (Table 19.4, p. 805)

- a. Side-chain oxidation of alkylbenzene to give benzoic acid derivatives (Ch. 11.13): reagent: KMnO₄
- b. Oxidation of primary alcohols (Ch. 15.10) reagent: H₂CrO₄/H₂Cr₂O₇
- c. Oxidation of aldehydes (Ch. 17.15) reagent: H₂Cr_Q₄/H₂Cr₂O₇

19.11: Synthesis of Carboxylic Acids by the Carboxylation of Grignard Reagents. Conversion of an alkyl or aryl Grignard reagent to a carboxylic acid with an addition carbon (the CO_2H group). The CO_2H group is derived from CO_2 .

Grignard reagents are strong bases and strong nucleophiles and Are incompatible with acidic (alcoholc, thiols, amines, carboxlic acid, amides,) or electrophilic (aldehydes, ketones, esters, nitrile, halides) groups.

19.12: Synthesis of Carboxylic Acids by the Preparation and Hydrolysis of Nitriles. Cyanide ion is an excellent nucleophile and will react with 1° and 2° alkyl halides and tosylates to give nitriles. This reaction add one carbon. The nitrile Can be hydrolyzed to a carboxylic acid

Cyanohydrins (Ch. 17.7) are hydrolyzed to α -hydroxy-carboxylic acids.

19.13: Reactions of Carboxylic Acids: A Review and Preview.

a. Conversion to acid chlorides (Ch. 12.7). Reagent: SOCl₂

$$R-CO_2H \xrightarrow{SOCl_2} \xrightarrow{0} \qquad R-C-CI \qquad + SO_2 + HCI$$

Reduction to a 1° alcohol (Ch. 15.3). Reagent: LiAlH₄
 Carboxylic acids are reduced to 1° alcohols by LAH,
 but not NaBH₄

c. Acid-catalyzed esterification (Ch. 15.8) Reagent: R'OH, H+ (-H₂O)

R-CO₂H
$$\xrightarrow{\text{R'OH, H}^+ (-\text{H}_2\text{O})}$$
 O R-CO₂H

157

19.14: Mechanism of Acid-Catalyzed Esterification.

Fischer Esterification (Fig. 19.1, p. 809-810)

$$R-CO_2H \xrightarrow{R'OH, H^+} O \\ R-C'-OR' + H_2O$$

19.15: Intramolecular Ester Formation: Lactones. Lactones are cyclic esters derived from the intramolecular esterification of hydroxy-carboxylic acids. 4-Hydroxy and 5-hydroxy acids cyclize readily to form 5- and 6-membered ring (γ and δ) lactones.

19.16: α -Halogenation of Carboxylic Acids: The Hell-Volhard-Zelinsky Reaction.

Mechanism of α -halogenation goes through an acid bromide intermediate. The acid bromide enolizes more readily than the carboxylic acid. Mechanism is analogous to the α -halogenation of aldehydes and ketones

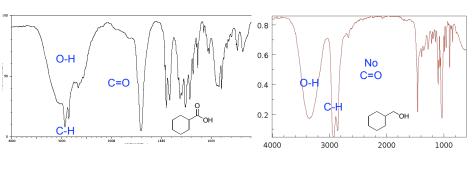
The $\alpha\text{-halo}$ carboxylic acid can undergo substitution to give $\alpha\text{-hydroxy}$ and α -amino acids.

19.17: Decarboxylation of Malonic Acid and Related

Compounds. Carboxylic acids with a carbonyl or nitrile group at the β -position will decarboxylate (lose CO₂) upon heating

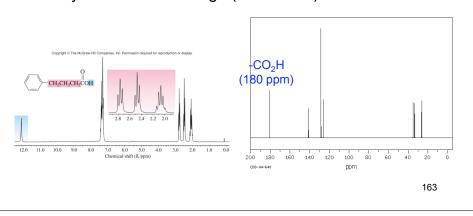
 β -keto-acid

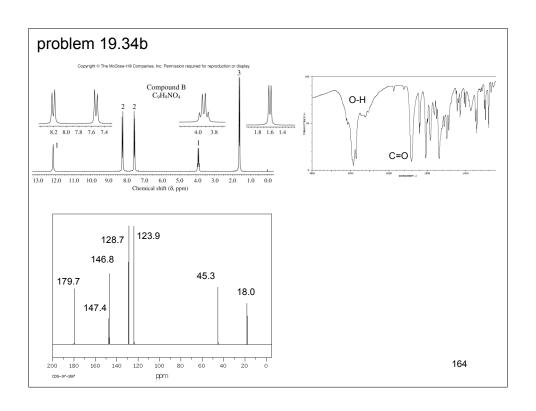
Decarboxylation initially leads to an enol of the β -carbonyl group. This is a key step in the *malonic acid synthesis* (Ch. 21.8) and the *acetoacetic ester synthesis* (Ch. 21.7).


161

19.18: Spectroscopic Analysis of Carboxylic Acids

Infrared Spectroscopy


Carboxylic acids:


Very broad O-H absorption between 2500 - 3300 cm⁻¹ usually broader than that of an alcohol Strong C=O absorption bond between 1700 - 1730 cm⁻¹

¹*H NMR*: The -CO₂H proton is a broad singlet near δ ~12. When D₂O is added to the sample the -CO₂H proton is replaced by D causing the resonance to disappear (same for alcohols). The -CO₂H proton is often not observed.

 13 C NMR: The chemical shift of the carbonyl carbon in the 13 C spectrum is in the range of ~165-185. This range is distinct from the aldehyde and ketone range (~190 - 220)

