1. (12) Obtain $\partial w/\partial x$ for: (a) $w = (xy)^2$; (b) $w = \ln (x^2 + y^2)^{3/2}$; (c) $w = \exp(yz/x^2)$.

2. (7) Suppose that $w = e^{3x+2y} \sin(2z)$, and that $x = \ln t$, $y = \ln (1/t + 1)$ and $z = t^2$.
 (a) Express w as a function of t alone, by substituting these definitions of x, y, and z.
 (b) Obtain the derivative, dw/dt. (Don't bother to factorize in this case.)
 (c) Why is this written dw/dt and not $\partial w/\partial t$?

3. (6) In problem 11, you had to use the chain rule to obtain the partials $(\partial f/\partial x)_t$ and $(\partial f/\partial t)_x$, when f was defined as $f(x+ct)$. A similar problem occurs in the treatment of binary solutions, when the density of a solution of A and B is expressed as $\rho(x)$, where the mole fraction $x = n_A/(n_A + n_B)$.
 (a) Obtain an expression for $(\partial \rho/\partial n_B)_{n_A}$ in terms of $(\partial \rho/\partial x)$, n_A, and n_B.
 (b) Suppose ρ can be expressed as $\rho = a + bx + cx^2$. Re-express your result from (a) in terms of n_A, n_B, and the constants a, b, and c.