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Abstract

Metabolic flux analysis (MFA) is a powerful approach for quantifying plant central carbonmetabolism based
upon a combination of extracellular flux measurements and intracellular isotope labeling measurements. In
this chapter, we present the method of isotopically nonstationary 13C MFA (INST-MFA), which is
applicable to autotrophic systems that are at metabolic steady state but are sampled during the transient
period prior to achieving isotopic steady state following the introduction of 13CO2. We describe protocols
for performing the necessary isotope labeling experiments, sample collection and quenching, nonaqueous
fractionation and extraction of intracellular metabolites, and mass spectrometry (MS) analysis of metabolite
labeling. We also outline the steps required to perform computational flux estimation using INST-MFA. By
combining several recently developed experimental and computational techniques, INST-MFA provides an
important new platform for mapping carbon fluxes that is especially applicable to autotrophic organisms,
which are not amenable to steady-state 13C MFA experiments.
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1 Introduction

Metabolic engineering of plants has great potential for the produc-
tion of novel compounds and chemical feedstocks at low costs.
However, in order to take full advantage of this potential, a better
understanding of plant central carbon metabolism is needed. The
ability to quantitatively map intracellular carbon fluxes using iso-
tope tracers and metabolic flux analysis (MFA) is critical for identi-
fying pathway bottlenecks and elucidating network regulation in
plants, especially transgenic varieties that have been engineered to
alter their native metabolic capacities [1, 2]. Typically, MFA relies
on the assumption of both metabolic and isotopic steady state.
Achieving this situation experimentally involves (1) equilibrating
the system in a stable metabolic state, (2) introducing an
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isotopically labeled substrate without perturbing the metabolic
steady state, (3) allowing the system to establish a new isotopic
steady state that is dictated by the underlying metabolic fluxes, and
(4) measuring isotopic labeling in the fully equilibrated system as
shown in Fig. 1. Depending on the relative speed of metabolic
versus isotopic dynamics, however, other experimental scenarios
can be envisioned. If labeling occurs slowly but metabolism is
maintained in a fixed state, isotopically nonstationary MFA
(INST-MFA; Fig. 1) can be applied to determine fluxes from
transient isotope labeling measurements [3]. This requires isoto-
pomer measurements to be collected at multiple time points during
the pre-steady-state labeling period followed by least-squares fitting
of dynamic isotopomer balance equations to identify best-fit esti-
mates of flux parameters.

Although 13C is the preferred isotope tracer for quantifying
central carbon metabolism in heterotrophic systems, autotrophic
organisms assimilate carbon solely from CO2 and therefore pro-
duce a uniform steady-state 13C-labeling pattern that is insensitive
to fluxes (Fig. 2). This makes conventional steady-state 13C-MFA
ineffective for quantifying autotrophic metabolism [4]. However,
transient measurements of isotope incorporation following a step
change from natural CO2 to

13CO2 can be used to determine fluxes
by application of INST-MFA. Furthermore, INST-MFA has the
ability to quantify metabolite pool sizes based solely on their label-
ing dynamics [5, 6], thus providing a potential framework for
integrating metabolomic datasets with MFA. Despite its advan-
tages, however, the increased complexity of INST-MFA introduces

Fig. 1 Comparison between steady-state and nonstationary MFA methodologies.
The relative speed of metabolic and isotopic dynamics will influence the type of
MFA study performed. The left panel shows the conventional MFA approach
under both metabolic and isotopic steady state. The right panel shows INST-MFA
at metabolic steady state but not isotopic steady state
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additional difficulties at both the computational and experimental
levels that must be addressed. First, the solution of large-scale
ordinary differential equation (ODE) models poses a substantial
challenge to efficiently simulate transient isotope labeling experi-
ments. The application of EMU decomposition to INST-MFA has
greatly reduced this computational burden and has enabled deter-
mination of fluxes and accurate confidence intervals in biologically
relevant networks [7, 8]. Second, the requirement for isotopically
nonstationary measurements adds further complexity to experi-
mental design, including selection of sampling time points and
metabolite concentration measurements. Finally, rapid sampling
and metabolite quenching must be applied in order to obtain
meaningful isotopomer data from rapidly labeled intracellular
metabolites. The field of metabolomics has witnessed considerable
progress in this area, and some of these measurement techniques
have already been successfully adapted for isotopomer studies in
plants [9–12].

In this contribution, we present up-to-date protocols for
performing INST-MFA on photosynthetic tissues under conditions

Fig. 2 Example of carbon labeling in an autotrophic system. Following the introduction of 13CO2 to the Calvin
cycle, intracellular metabolites become gradually labeled over time. Once steady-state labeling is achieved, all
metabolites are uniformly 13C enriched irrespective of fluxes and intracellular pool sizes. Labeling patterns
observed during the isotopically transient period, however, can be computationally analyzed to determine
fluxes
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of metabolic steady state, which is enabled by recent advancements
in both experimental techniques for obtaining transient isotopomer
measurements and computational tools for nonstationary flux
analysis. Specifically, we describe experimental protocols for
performing transient isotope labeling experiments, sample collec-
tion and quenching, extraction of intracellular metabolites, and
mass spectrometry (MS) analysis of metabolite labeling, We also
describe the important technique of nonaqueous fractionation
(NAF), which can be used to obtain compartment-specific
information on isotopic enrichment [13]. We then discuss the
computational steps required to simultaneously integrate mass
isotopomer distribution (MID) measurements from multiple path-
ways and compartments to reconstruct comprehensive flux maps of
autotrophic metabolism. We anticipate that these methods will
become part of a growing MFA toolbox, which has already been
rapidly adopted by the plant biology and metabolic engineering
communities due to its ability to quantify network-wide metabolic
phenotypes in seeds and other non-photosynthetic tissues.

2 Materials

2.1 13C Labeling

Experiment and

Quenching

1. Plants at metabolic steady state (see Note 1).

2. Glove bag (Glas-Col, 1700 � 1700 � 1100) or other labeling
chamber.

3. 13C labeled CO2 gas; 13CO2/N2/O2 gas mix, ratio 0.033/
78/21.967 (Sigma).

4. Liquid nitrogen.

2.2 CO2
Consumption

and Production

Measurement

1. Li-COR 6400XT portable photosynthesis system (Lincoln,
NE, USA).

2.3 Starch

Production

Measurement

1. 75 % (v/v) methanol.

2. α-amylase.

3. Amyloglucosidase.

4. Megazyme Kit (K-TSTA).

5. UV–Vis spectrophotometer.

2.4 Nonaqueous

Fractionation

1. Tetrachloroethylene.

2. Heptane.

3. Centrifuge (capable of at least 13,000 � g).

4. Inert centrifuge tubes, preferably transparent.
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2.5 Enzymatic

Assays

2.5.1 Phosphoenolp-

yruvate Carboxylase Assay

Buffer

1. 90 μL of 110 mM Tris sulfate adjusted to pH 8.5 at 25 �C with
NaOH (all volumes are per sample).

2. 5 μL of 300 mM MgSO4�7H2O.

3. 15 μL of 100 mM NaHCO3.

4. 5 μL of 6 mM β-NADH.

5. 15 μL of dioxane.

6. 5 μL of 300 mM dithioerythritol (DTE).

7. 0.5 μL of 600 units/mL malic dehydrogenase (MDH).

2.5.2 Prephenate

Aminotransferase Storage

Buffer

1. 10 wt% glycerol.

2. 5 wt% of 1 M sodium phosphate, adjusted to pH 8.0 at 25 �C
with NaOH.

3. 1 wt% of 10 mM pyridoxal 5-phosphate (PLP).

2.5.3 Prephenate

Aminotransferase Assay

Solution

1. 1.25 μL of 1M sodium phosphate, adjusted to pH 8.0 at 25 �C
with NaOH (all volumes are per sample).

2. 0.5 μL of 10 mM PLP.

3. 5 μL of 100 mM aspartic acid.

4. 2.5 μL of 10 mM prephenic acid.

2.5.4 Prephenate

Aminotransferase Assay

Derivatizing Solution

1. 5 mg Phthaldialdehyde (all volumes are per sample).

2. 900 μL of 0.5 M boric acid, adjusted to pH 10.2 at 20 �C with
NaOH.

3. 125 μL Methanol.

4. 5 μL β-mercaptoethanol.

2.5.5 α-Mannosidase

Assay

1. 50 mM sodium citrate buffer adjusted to a pH 4.5 at 25 �C.

2. 5 mM p-nitrophenol-α-D-mannoside.

3. 0.2 M boric buffer adjusted to pH 9.8 at 25 �C.

4. PD-10 protein desalting columns.

5. Microplate reader.

6. HPLC system equipped with a UV–Vis detector.

2.6 Metabolite

Extraction

1. Cellulose acetate spin-X columns.

2. Methanol.

3. Chloroform.

4. DI water.

5. Bench-top centrifuge (capable of at least 8,000 � g).
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2.7 Mass

Spectrometry Analysis

and Data Processing

1. GC-MS and/or LC-MS/MS.

2. Derivatization agents, vials, heating blocks, and nitrogen evap-
orator for GC-MS sample preparation (see Note 2).

3. Vials, columns, gases, buffers, solvents, and other consumables
for GC-MS or LC-MS/MS.

4. Computer equipped with either (1) freeware MS analysis soft-
ware (seeNote 3) or (2) commercial software for searching and
integrating mass spectra.

5. Mass spectral library for compound verification, such as the
NIST/EPA/NIH Mass Spectral Database [14], Golm Meta-
bolome Database [15], FiehnLib [16], Metlin [17], HMDB
[18], or MassBank [19].

2.8 Isotopically

Nonstationary

Metabolic Flux

Analysis

1. Computer equipped with research code or publically available
software capable of performing INST-MFA, such as Isotopo-
mer Network Compartmental Analysis (INCA; http://mfa.
vueinnovations.com/), which runs through the computing
environment of MATLAB.

3 Methods

3.1 13C Labeling

Experiment and

Quenching

The 13C labeling experiment should be initialized once the plants
are producing maximum biomass without production of reproduc-
tive organs (i.e., flowers and seeds) and approaching a metabolic
(pseudo) steady state (see Note 1).

1. To maintain steady state metabolism, phototrophs should be
isotopically labeled in the chamber near midday or 3–4 h after
exposure to light.

2. Remove samples from the chamber at multiple time points
(�5–15) prior to reaching isotopic steady state and quench
immediately.

3. Initiate quenching by immediately pouring liquid nitrogen
onto plant tissue in a way that minimizes shading.

4. Grind using a mortar and pestle.

3.2 CO2
Consumption

and Production

Measurement

1. Measure leaf CO2 assimilation in an incubator via a Li-COR
6400XT portable photosynthesis system and 2 � 3 cm standard
clear top or red/blue light source leaf chamber with the following
settings:

(a) Photon flux density (PFD): 200 μmol/(m2 s).

(b) Air temperature: 24 � 1 �C.

(c) Reference CO2 concentration: ambient level.
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3.3 Starch

Production

Measurement

1. Collect approximately 100 mg of fresh tissue.

2. Add tissue to 1.4 mL of 75 % (v/v) methanol at 70 �C for
30 min.

3. Add 750 μL chloroform (�20C) and 1500 μL DI water (4C)
and vortex

4. Spin down the sample to fraction the nonpolar metabolites into
the chloroform.

Remove the methanol/water phase for further analysis of
water-soluble metabolites.

5. Re-extract the remaining residue with 1.5 mL 80 % (v/v)
ethanol at 80 �C three times to remove all the remaining
water-soluble metabolites.

6. Dry down the remaining residue.

7. Digest the pellet with α-amylase and amyloglucosidase to
hydrolyze starch into maltodextrins and then into glucose.

8. Determine the starch concentration spectrophotometrically as
glucose equivalents using the Megazyme Kit.

3.4 Nonaqueous

Fractionation

NAF is an optional, yet invaluable, technique for separating meta-
bolites from different subcellular compartments in an ordered
manner so that they can be characterized and their relative quan-
tities at each locus can be identified. This procedure, first outlined
for plants by Gerhardt and Heldt [20], begins with the rapid
freezing and lyophilizing of the tissue. This arrests metabolism,
and the removal of water prevents polar metabolites from being
able to diffuse—instead they remain with the membrane of the
compartments in which they were localized while all enzymes are
retained compartmentally but inactive. At this point the cellular
material can be stratified by compartment using a nonaqueous
density gradient. This separation is quantified by extracting the
enzymes of each compartment and analyzing their relative activity
in each fraction of the density gradient. Using information on
how the compartments have been separated, coupled with a thor-
ough analysis of the metabolite profile of each fraction of the
density gradient, the metabolic profiles of each compartment
can be deconvoluted and the resulting data employed for further
analysis (see Note 5).

1. Grind the leaf tissue. It is crucial that frequency and time be
optimized to get small particles.

2. Filter the leaf powder by size before suspension in the loading
fraction of the gradient.

3. Prepare the steps in the gradient by mixing together various
ratios of tetrachloroethylene and heptanes. The NAF gradient
is prepared to achieve the maximum separation of biomass
(see Note 6).
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4. Carefully layer the steps in the gradient on top of each other in
the centrifuge tube, allowing only minimal mixing of the layers.
A loading layer and density well are prepared for the top and
bottom layers, respectively.

5. Place the loading layer with the sample suspended in it on top
of the gradient, once it is created.

6. Centrifuge the tube for 2 h at 13,000 � g to ensure full sepa-
ration of the cellular fragments throughout the gradient.

7. Remove the tube after centrifugation and draw out the sample
in fractions. The sample is drawn from the bottom of the tube
using a syringe of glass or other nonreactive material. Fraction
volumes are selected to help normalize the amount of biomass
in each fraction. Generally, six or seven fractions are drawn.

8. While still suspended, further separate the fractions in order to
accommodate the number of assays that will be performed (i.e.,
if three compartmental markers will be analyzed and each
requires suspension of cellular material in a separate buffer,
then the fraction will be separated into four parts—three for
the different assays and one for metabolite analysis).

9. Dry down the fractions under a stream of N2 to remove the
nonaqueous solvent before subsequent analysis.

3.5 Enzymatic

Assays

Enzymatic assays are used to determine the distribution of each
subcellular compartment throughout the fractions. Because the
cellular fragments frequently contain parts of multiple compart-
ments, this information is necessary to deconvolute the labeling
patterns observed in the metabolite profiles of the fractions. The
enzymes assayed are selected because they are easily and reliably
quantifiable and they are known to be present in only one compart-
ment. The assays outlined here are for the determination of cyto-
solic (phosphoenolpyruvate carboxylase), plastidial (prephenate
aminotransferase), and vacuolar (α-mannosidase) distribution.

Mitochondrial activity has been determined by others using the
method of Bergmeyer [21], although, due to the large standard
deviation of the assay, the compartment has not been unambigu-
ously delineated for any plant species [22]. Activity measurements
for each protein assay are normalized by their protein content.
Protein content is measured using a Pierce BCA protein assay kit
from Thermo Fisher Scientific (Rockford, IL).

3.5.1 Phosphoenol-

pyruvate Carboxylase

Assay

1. Resuspend samples in 0.5 mL of Tris sulfate buffer and allow to
incubate for 30–60min at 4 �C to effectively extract the protein.

2. Spin down the samples at 17,000 � g for 30 s.

3. Aliquot 10 μL of supernatant from each sample into the wells of
a 96-well plate.
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4. Following the procedure prescribed by Sigma-Aldrich [23],
add to the extract phosphoenolpyruvate carboxylase (PEPc)
assay buffer, as described in Subheading 2.5.

5. Allow the wells to equilibrate at 25 �C for 5 min.

6. Add 5 μL of 30 mM PEP solution to each well, except for the
last one, which will serve as a blank. Mix thoroughly for 1 min.

7. Measure the OD340 of each well periodically over the next
10 min to determine relative enzyme activity.

3.5.2 Prephenate

Aminotransferase Assay

A modified form of the method presented by Maeda et al. [24] is
used to measure prephenate aminotransferase (PAT) activity.

1. Resuspend the samples in 0.4 mL of PAT storage buffer. Allow
the samples to incubate for 30–60 min at 4 �C to effectively
extract the protein.

2. Spin down at 18,000 � g for 30 s.

3. Load the supernatant onto PD-10 columns, which have been
prewashed with the PAT storage buffer solution.

4. Elute fractions from the PD-10 columns 0.25 mL at a time.

5. Measure the OD280 of each PD-10 column fraction to deter-
mine the relative protein content. The set of subfractions with
the highest absorbance will be used in the PAT assay.

6. Perform the assay by adding PAT assay buffer to 15 μL of the
desalted enzyme solution.

7. Incubate the samples at 37 �C for 30–60 min.

8. Quench the samples with 50 μL of methanol and store at
�20 �C overnight to precipitate the protein.

9. Centrifuge the samples at 18,000 � g for 5 min to remove all
precipitated protein. The supernatant is analyzed by high-
performance liquid chromatography (HPLC).

10. Derivatize the samples immediately prior to injection using a
PAT assay derivatizing solution.

11. 10 μL samples are derivatized with 10 μL of derivatizing agent
in the injection needle for 2.5 min prior to sample separation.
This derivatizing solution should be changed every 12 h.

12. Run sample on an Agilent Eclipse XDB-C8 column
(4.6 � 150 mm) maintained at 35 �C. The mobile phase is a
ratio of 0.1 % ammonium acetate:methanol that varies accord-
ing to Table 1 with a constant flow rate of 0.4 mL/min.
Derivative concentrations were measured using a UV/Vis
detector observing absorbance at 336 nm with a reference of
390 nm. Figure 3 shows an example of the chromatogram.

3.5.3 α-Mannosidase

Assay

1. Extract protein samples in 50 mM sodium citrate buffer.

2. Allow samples to incubate for 30–60 min at 4 �C to effectively
extract the protein.
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3. Following the method of Li and Primate [25], add the
extracted enzyme to 5mM p-nitrophenol-α-D-mannoside solu-
tion at 25 �C in a 10:1 ratio.

4. Terminate the reaction after 10 min with a volume of 0.2 M
borate buffer at pH 9.8 equal to twice the reaction mixture.

5. Measure the OD400 of each sample to determine enzyme
activity.

3.6 Metabolite

Extraction

1. Weigh 200 mg tissue powder (kept in liquid N2) to a plastic
2 mL tube.

2. Add 3 mL 7:3 methanol–chloroform (�20 �C); after vigorous
shaking, the mixture is incubated at �20 �C for 2 h with
occasional shaking.

3. Water-soluble metabolites are extracted from the chloroform
phase by adding 2.4 mL H2O; after vigorous shaking, centri-
fuge for 5 min at 420 � g.

4. Remove the upper, aqueous methanol–H2O phase to a glass
reaction tube and repeat step 3; mix the second upper phase
with the first one; the final volume of the extract should be
about 6.5 mL.

5. Dry the extract with N2 at room temperature.

Fig. 3 Sample HPLC chromatogram of the PAT assay using phthaldialdehyde as a derivatizing agent

Table 1
HPLC mobile-phase gradient for PAT assay

Time (min) % MeOH

0 15

15 65

25 65

27 15

32 15
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6. Redissolve the dry extract with 200 μL H2O; remove the
viscous, high-molecular-mass components from the samples
by applying extracts to 0.45 μm cellulose acetate centrifuge
tube filters.

3.7 Mass

Spectrometry Analysis

Divide the extracted sample from each fraction into three different
vials. One vial will be used for LC-MS/MS analysis and the remain-
ing two vials will be dried down the rest of the way for amino acid
and organic acid analyses using GC-MS.

3.7.1 GC-MS Analysis

of Amino Acids

GC-MS analysis of amino acids is most readily achieved following
conversion to tert-butyldimethylsilyl (TBDMS) derivatives [26].
TBDMS derivatives are approximately 1,000 times more stable
than trimethylsilyl (TMS) derivatives and produce characteristic
[M-57]+, [M-85]+, and [M-157]+ fragment ions that facilitate
identification. Ion masses and relative retention times are detailed
by Wittman et al. [27].

1. Dissolve dried sample in 100 μL anhydrous pyridine in a
fume hood.

2. Add 70 μL MTBSTFA + 1 % TBDMCS.

3. Sonicate for 5 min.

4. Incubate for 2 h at 45 �C on dry block heater.

5. Transfer supernatant to injection vial.

6. Run sample on single quadrupole GC-MS with the following
settings:

(a) Injection volume: 1 μL.
(b) Split injection mode, 10:1 ratio (see Note 7).

(c) Column: DB-5MS (or similar), 30 m � 0.25 mm ID,
0.25 μm film.

(d) Column flow: He at 1 mL/min (see Note 8).

(e) Inlet temp: 270 �C.

(f) Interface temp: 300 �C.

(g) Temp profile: 135 �C for 3 min, ramp at 3 �C/min to
280 �C, hold at 280 �C for 2 min (53.3-min run time).

(h) MS settings: Electron impact (EI) ionization, full-scan
detection (100–500 m/z), 5-min solvent delay.

3.7.2 GC-MS Analysis

of Organic Acids

Organic acids can be converted to their TBDMS derivatives and
analyzed in much the same way as amino acids. However, it is recom-
mended to first convert all ketone and aldehyde functional groups to
their associated methyloxime derivatives. This prevents keto-enol
tautomerization, which would otherwise result in multiple TBDMS
derivatives. Ion masses are detailed by Roessner et al. [28].
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1. Dissolve dried sample in 100 μL pyridine with 20 mg/mL
methoxyamine hydrochloride MOX reagent in a fume hood.

2. Sonicate for 5 min.

3. Incubate for 90 min at 30 �C on dry block heater.

4. Add 100 μL MTBSTFA + 1 % TBDMCS.

5. Incubate for 60 min at 37 �C on dry block heater.

6. Remove from heating block and incubate overnight at room
temperature (see Note 9).

7. Centrifuge for 5 min at 18,000 � g to remove solid debris.

8. Transfer liquid to injection vial.

9. Run sample on single quadrupole GC-MS with the following
settings:

(a) Injection volume: 1 μL.
(b) Purged splitless mode, set to activate at 1 min (see Note 7).

(c) Column: DB-5MS (or similar), 30 m � 0.25 mm ID,
0.25 μm film.

(d) Column flow: He at 1 mL/min (see Note 8).

(e) Inlet temp: 270 �C.

(f) Interface temp: 300 �C.

(g) Temp profile: 70 �C for 3 min, ramp at 4 �C/min to
280 �C, hold at 280 �C for 2 min (75-min run time).

(h) MSsettings: Scanmode (100–550 m/z), 5-min solventdelay.

3.7.3 LC-MS/MS

Analysis of Sugar

Phosphates

Although analysis of labeling in macromolecule components
such as protein, starch, and lipids has dominated the MFA
literature due to their high abundance in tissues, macromole-
cules label too slowly for INST-MFA and recent advances in MS
technology have facilitated direct analysis of free intracellular
metabolites. This approach enables quantification of MIDs in
sugar phosphate intermediates that participate directly in glycol-
ysis and Calvin cycle reactions, providing comprehensive and
dynamic information on flux through these important pathways.
However, for intermediates found in multiple subcellular com-
partments (e.g., glucose-6-phosphate in both the cytosol and
chloroplast), this will only provide the average labeling among
the various intracellular pools, unless NAF is applied to generate
enriched subfractions first.

The vast majority of sugar phosphate analysis has been per-
formed using LC-MS/MS to avoid thermal degradation of these
nonvolatile analytes [29]. The LC-MS/MS conditions provided are
based on the method developed by Luo et al. [30], which has been
subsequently modified and applied to analyze labeling in cyanobac-
teria extracts by Shastri et al. [31].
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1. Transfer sample to LC injection vial.

2. Run sample on linear ion-trap triple quadrupole LC-MS/MS
with the following settings:

(a) Injection volume: 10 μL.
(b) Column: Phenomenex Synergi Hydro-RP (or similar),

150 mm � 2.1 mm ID, 4 μm particle size.

(c) Column flow: 0.3 mL/min.

(d) Column temp: 25 �C.

(e) Eluent A: Solution of 10 mM tributylamine + 15 mM
acetic acid (see Note 10).

(f) Eluent B: HPLC-grade methanol.

(g) Gradient profile: 0 % B (0 min), 8 % B (8 min), 22 % B
(18 min), 40 % B (28 min), 60 % B (32 min), 90 % B
(34 min), 90 % B (37 min), 0 % B (39 min), 0 % B (49 min).

(h) MS settings: Negative-mode electrospray ionization (ESI),
MRM mode (see Table 2 and Note 11).

Table 2
LC-MS/MS ion transitions and method parameters

Analyte
Retention
time (min) MS1 MS2 DP EP CE CXP CUR IS TEM GS1 GS2 CAD

Glycolate 6.2 75 43 �52 �10 �15 �7 40 �4,500 550 85 90 High

G6P/
F6P

12.4/13.3 259 97 �50 �2 �23 �10 40 �4,500 550 85 90 High

GAP/
DHAP

12.2/16.9 169 97 �50 �3 �12 �8.5

S7P 12.9 289 97 �26 �11 �14 �4.5
R5P/
X5P/
RU5P

12.7/14.2/
14.5

229 97 �79 �6 �17 �15

PYR 15.7 87 43 �33 �10 �13 �7

SUC 22.8 117 73 �50 �3 �15 �2 30 �4,500 550 90 90 9
MAL 24.4 133 73 �50 �9 �23 �11
αKG 25.5 145 101 �43 �5 �11 �9.6
FUM 26.4 115 71 �37 �4 �12 �11
3PGA 26.5 185 79 �42 �5 �46 �11
FBP 27 339 97 �66 �8 �26 �11
CIT/
ICT

27.4 191 75 �60 �10 �25 �10

RUBP 27.6 309 97 �68 �6 �28 �12
PEP 27.8 167 79 �55 �5 �21 �7

Labeling of selected metabolites measured by monitoring transitions from selected precursor ions (MS1) to daughter

ions (MS2) in multiple reactionmonitoring (MRM)mode. Compound specificMS parameters are abbreviated as follows:

declustering potential (DP), entrance potential (EP), collision energy (CE), collision exit potential (CXP), curtain gas
(CUR), ion spray velocity (IS), temperature (TEM), ion source gas 1 (GS1), ion source gas 2 (GS2), and collision (CAD).

List of analyte abbreviations can be found in Subheading 4 (see Note 15)
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3.8 MS Data

Processing

Analysis of MS data requires (1) identification of chromatographic
peaks and fragment ions associated with target analytes of interest,
(2) integration of ion chromatograms over time to quantify relative
abundance of specific isotope peaks, and (3) assessment of measure-
ment standard errors.

1. Identify the chromatographic peaks associated with the analytes
of interest based on both the retention time (RT) and the MS
fingerprint of the peak.

2. Identify ions to be used for mass isotopomer analysis and
determine their molecular composition. The best GC-EI-MS
fragment ions are highly abundant ions with masses greater
than 150 Da, since these are less likely to be contaminated by
interfering fragment ions of similar mass.

3. Integrate the mass isotopomer peaks using either custom or
commercial software.

4. Correct MIDs for natural isotope abundance (optional). The
method of Fernandez et al. [32] can be applied to perform the
correction.

5. Calculate the mean and standard error of MIDs for each
metabolite at each time point.

3.9 Isotopically

Nonstationary

Metabolic Flux

Analysis (INST-MFA)

A flow chart of a typical INST-MFA process is shown in Fig. 4.
INST-MFA is concerned with solving an “inverse problem” where
fluxes and pool sizes are estimated from measured labeling patterns
and extracellular rates through the means of an iterative least-
squares fitting procedure. At each iteration, a “forward problem”
is solved where an isotopomer model is used to simulate labeling
measurements for a given metabolic network and a given set of
parameter estimates. The discrepancy between the simulated and
measured labeling patterns is then assessed, and the parameter
estimates are updated to achieve an improving fit. Once conver-
gence to the best-fit solution is obtained, the procedure terminates
and the optimal flux and pool size estimates are returned.

1. Build an isotopomer model for INST-MFA. In order to perform
INST-MFA, it is necessary to reconstruct a metabolic network
from biochemical literature and the annotated genome of the
organism of interest. This network must prescribe both (1) the
stoichiometry of all enzymatic reactions under consideration
and (2) atom transitions for each reaction (see Note 12). Reac-
tions must also be classified as either reversible or irreversible.

2. Construct the stoichiometric matrix S. Fluxes are required to
satisfy the stoichiometric constraint

S � v ¼ 0 (1)
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where S is the stoichiometric matrix and v is the flux vector. In
Eq. 1, the stoichiometric matrix S is a k � j matrix, with k
metabolites and j fluxes. Reversible reactions should be mod-
eled as separate forward and backward fluxes so that all fluxes
are nonnegative. Appendix shows a simple network model
example, which illustrates the process of setting up the stoi-
chiometric matrix as well as subsequent steps discussed below.

3. Identify the free fluxes of the network and the null space matrix.
From a computational standpoint, it is more convenient to
work with “free” fluxes rather than the “true” network fluxes
[33, 34]. Free fluxes can be obtained from the general solution
to Eq. 1:

v ¼ N � u (2)

where N is the null space matrix of S and u is the vector of free
fluxes. There are many methods to calculate a valid null space
matrix, and generally there is not a unique null space matrix for
any given stoichiometric matrix [35]. The size of the null space
matrix and the number of independent flux variables are
determined by the rank of the stoichiometric matrix. With
r ¼ rank(S) � k, the null space matrix is a j � j � r matrix
and the number of free fluxes is j � r.

Fig. 4 Flow chart showing the overall schematic of 13C INST-MFA. Following the
labeling experiment and MS analysis of the measured metabolites,
computational analysis of the dynamic changes in isotope labeling patterns
can be used to estimate metabolic pathway fluxes and pool sizes. This
involves solving an inverse problem whereby the vectors of flux (v) and pool
size (c) parameters are iteratively adjusted until the mismatch between
simulated and experimentally measured data sets is minimized
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4. Identify the minimal set of EMUs required to simulate the MIDs
of the measured metabolites. In INST-MFA, the isotopomer
balances are described by a system of ordinary differential equa-
tions, which is significantly more difficult to solve than the
algebraic systems that describe steady-state labeling. Due to
this additional difficulty, algorithms for solving the forward
problem of INST-MFA need to be carefully designed so that
computational expense does not become prohibitive. The most
efficient approach involves first decomposing the isotopomer
network into elementary metabolite units (EMUs) [7, 8]. By
only solving for the isotopomer distributions of EMUs that
contribute to the available measurements, this approach mini-
mizes the number of ODEs that need to be integrated and
thereby enables the forward problem to be solved thousands
of times faster than previous methods. This, in turn, increases
the efficiency of solving the inverse problem of INST-MFA
because each iteration of the parameter estimation procedure
can be completed in minimal time.

An EMU is defined as a distinct subset of a metabolite’s
atoms and can exist in a variety of mass states depending on its
isotopic composition. In its lowest mass state, an EMU is
referred to as M0, while an EMU that contains one additional
atomic mass unit (e.g., as a result of a 13C atom in place of 12C
atom) is referred to as M1, with higher mass states described
accordingly. An MID is a vector that contains the fractional
abundance of each mass state of an EMU. To solve the forward
problem of simulating metabolite labeling in INST-MFA, the
isotopomer network is first systematically searched to enumer-
ate all EMUs that contribute to measurable MS fragment ions
[8]. The main advantage of the EMU decomposition is that
metabolites are never broken into smaller pieces than is strictly
required to describe the labeling state of the selected metabo-
lites (see Appendix).

5. Set up EMU balances and simulate the labeling distribution. The
EMU reactions identified from network decomposition form
the new basis for generating system equations. In INST-MFA,
these EMUs are grouped into mutually dependent blocks using
a Dulmage–Mendelsohn decomposition [36, 37] (seeNote 13).
Therefore, by definition, all EMUswithin a particular block have
the same number of atoms and must be solved simultaneously
and not sequentially. The decoupled blocks can be arranged into
a cascaded system of ODEs with the following form:

Cn � dXn

dt
¼ An � Xn þ Bn � Yn (3)

Level n of the cascade represents the network of EMUs within
the nth block. The rows of the state matrix Xn correspond to
MIDs of EMUs within the nth block. The input matrix Yn is

196 Lara J. Jazmin et al.



analogous but with rows that are MIDs of EMUs that are
previously calculated inputs to the nth block (or MIDs of
source EMUs that are unbalanced). The concentration matrix
Cn is a diagonal matrix whose elements are pool sizes
corresponding to EMUs represented in Xn. The system matri-
ces An and Bn describe the network as follows:

An i; jð Þ¼ �sum of fluxes consuming ith EMU inXn i¼ j

flux to ith EMU inXn from j th EMU inXn i 6¼ j

(
(4)

Bn i; jð Þ ¼ flux to ith EMU in Xn from j th EMU in Ynf (5)

The system matrices An and Bn can be evaluated directly once
the “true” flux vector (v) has been determined from the free
fluxes (u) and the null space matrix (N) (see Appendix).

6. Optimize parameters. Fluxes and pool sizes are estimated by
minimizing the difference between measured and simulated
data according to the following equation [5, 8]:

minu;cϕ¼ m u;c; tð Þ� bmðtÞ½ 	T �
X�1

m
� m u;c;tð Þ� bmðtÞ½ 	

s:t:N �u
0;c
0
(6)

where ϕ is the objective function to be minimized, u is a vector
of free fluxes, c is a vector of metabolite concentrations, t is
time, m(u,c,t) is a vector of simulated measurements, bmðtÞ is a
vector of observed measurements,

P
m is the measurement

covariance matrix, andN is the null space of the stoichiometric
matrix. A reduced gradient method can be implemented to
handle the linear constraints of this problem within a Leven-
berg–Marquardt nonlinear least-squares solver [38, 39]. Alter-
natively, gradient-free optimization approaches have been
applied by Noh et al. [5]. Steps 7 and 8 do not need to be
solved when using a gradient-free method.

7. Differentiate the isotopomer balances with respect to each free flux
to generate the sensitivity equations. Solve the sensitivity equations
to calculate the first derivatives of the measured MIDs with respect
to the free parameters. Estimation of both the unknown fluxes
and pool sizes using INST-MFA is accomplished by finding a
best-fit solution to the inverse problem. Efficient solution of this
problem typically relies on optimization algorithms that choose
the search direction based on the gradient of the least-squares
objective function (see Eq. 6) with respect to all adjustable para-
meters. The most accurate and least expensive way to obtain the
required gradient information is to integrate a system of sensitiv-
ity equations whose solution describes how the calculated MIDs
vary in response to changes in the model parameters. Implicit
differentiation of Eq. 3 yields the following sensitivity equation:
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d

dt

@Xn

@p
¼ C�1

n �An � @Xn

@p
þ @ C�1

n � An

� �
@p

� Xn

þC�1
n � Bn � @Yn

@p
þ @ C�1

n � Bn

� �
@p

� Yn (7)

where p is the vector of adjustable flux and pool size parameters.
This system of equations can be solved in tandem with those of
Eq. 3, and the time-dependent sensitivities can be used to
evaluate the objective function gradient during each iteration
of the INST-MFA inverse problem.

8. Calculate the Hessian and gradient of the objective function.
Differentiation of the objective function with respect to the
flux and pool size parameters will yield equations for the Hes-
sian matrix H and the gradient vector J:

J ¼ @m

@p

� �T

�
X�1

m
� m � bmð Þ (8)

H ¼ @m

@p

� �T

�
X�1

m
� @m

@p

� �
(9)

where (∂m/∂p) is the matrix of sensitivities of the simulated
measurements with respect to the parameters. Both the Hessian
and gradient will be evaluated at each iteration if a gradient-
based optimization algorithm is employed.

9. Evaluate the goodness of fit. Flux and pool size estimation is
initiated with random values for all fluxes and pool sizes. The
estimation algorithm will continue until no further improve-
ments are made to the sum of squared residuals (SSRES) of the
objective function. However, the fact that INST-MFA yields a
set of fluxes that minimize the difference between the observed
and simulated measurements does not mean that the flux model
is adequate. Testing the goodness of fit will determine whether
the optimal solution is statistically acceptable based on the mini-
mized SSRES. At convergence, the minimized variance-
weighted SSRES is a stochastic variable drawn from a chi-square
distribution with n–p degrees of freedom (DOF), where n is the
number of independent measurements and p is the number of
estimated parameters. The SSRES that is calculated should

therefore be in the interval χ2α=2 ; χ
2
1�α=2

h i
, where α is a chosen

threshold value corresponding to the desired confidence level
(e.g., 0.05 for 95 % confidence or 0.01 for 99 % confidence).
The model fit is accepted when the SSRES falls within the limits
of the expected chi-square range [40]. Additionally, the distri-
bution of residuals should be assessed for normality. The stan-
dard deviation-weighted residuals should be normally
distributed with a mean of zero and standard deviation of one.

198 Lara J. Jazmin et al.



One approach that can be used to evaluate the hypothesis that
the residuals are normally distributed is the Lilliefors test [41].
Various plots can also be constructed to assess normality of the
residuals.

10. Calculate the 95 % confidence intervals using either continuation
methods or Monte Carlo analysis. Once an optimal solution has
been obtained, nonlinear confidence intervals on the fitted
parameters should be computed using robust, global methods
instead of relying solely upon local standard errors. The local
standard errors can be easily obtained from the parameter
covariance matrix at the optimal solution; however, they do
not accurately reflect changing sensitivities at points removed
from the optimal solution. Parameter continuation can be
performed to calculate accurate upper and lower bounds on
the 95 % confidence interval for each flux or pool size parame-
ter [40]. This determines the sensitivity of the minimized SSE
to varying a single parameter away from its optimal value while
allowing the remaining parameters to adjust in order to mini-
mize Δϕ. Large confidence intervals indicate that the flux
cannot be estimated precisely. On the other hand, small confi-
dence intervals indicate that the flux is well determined. Monte
Carlo simulation can also be used to calculate the 95 % confi-
dence intervals. This method is typically more expensive than
the parameter continuation approach but is expected to yield
similar results.

11. Report the flux values and flux uncertainties. Once an accept-
able fit to the experimental measurements has been achieved
and confidence intervals have been computed for all para-
meters, the results are best summarized visually in the form of
a flux map. Figure 5 shows an example plant flux map under
photoautotrophic growth conditions using INST-MFA,
involving multiple subcellular compartments. Several software
tools have been recently developed, which aid in the construc-
tion of these maps (see Note 14).

4 Notes

1. For labeling experiments involving Arabidopsis thaliana, it is
suggested that 4-week-old plants be used. This is because 4-
week-old plants at metabolic steady state provide the maximum
biomass, RuBisCO content, and chlorophyll content without
the production of reproductive organs (i.e., flowers and seeds).
Thus, the 4-week-old plants are active and vegetative. Addi-
tionally, metabolic steady state can be determined by measuring
the sucrose and starch production of leaves; if the production of
sucrose and starch remains consistent, then metabolic steady
state can be established.
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2. Derivatization agents such as methoxyamine (MOX), trimethyl-
siloxane (TMS), or tert-butyl dimethylsiloxane (TBDMS) are
typical for GC-MS analysis. The MOX reaction protects ketone
and aldehyde functional groups and thereby prevents the forma-
tion of multiple TMS or TBDMS derivatives. This step is unnec-
essary if no ketone or aldehyde functional groups are present in
the analytes of interest. TMS and TBDMS derivatives produce
several characteristic fragment ions that facilitate identification
[42]. Huege et al. [10] provide a list of some metabolites
derivatized with TMS used for isotopomer analysis via GC-MS
analysis. Ahn and Antoniewicz [43] provide a similar list for
TBDMS-derivatized metabolites for GC-MS analysis.

3. Available GC-MS freeware include AMDIS (http://chemdata.
nist.gov/mass-spc/amdis/) and Wsearch32 (http://www.
wsearch.com.au/wsearch32/wsearch32.htm). Two popular
freeware programs for LC-MS/MS data analysis are MZmine
and XCMS, the latter of which runs in the R statistical pro-
gramming environment. Both programs require the user to
convert raw data files into a nonproprietary format such as
mzXML, NetCDF, or mzData. Conversion to mzXML format

Fig. 5 Example flux map for a plant INST-MFA study under photoautotrophic growth conditions. This flux map
shows a hypothetical flux map associated with a plant INST-MFA study involving multiple subcellular
compartments. Values are represented as M � SE, where M is the median of the flux confidence interval
and SE is the estimated standard error of M. Arrow thickness is scaled proportional to net flux. Dotted arrows
indicate transport reactions between compartments
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can be accomplished using one of several instrument-specific
software tools developed and maintained by the Seattle Prote-
ome Center (http://tools.proteomecenter.org/software.php).

4. Samples should be collected more frequently near the beginning
of the tracer experiment, as the isotopic labeling will be changing
most rapidly during this initial time period. For example, Wie-
chert et al. [5] have recommended using an approach where the
length of each time interval increases exponentially (e.g., 1, 2, 4,
8, 16) following an initial period where uniformly spaced sam-
ples are collected at the maximum rate.

5. The results from the fractional labeling measurements are not
immediately employable in their acquired form but must be
deconvoluted to determine the actual MIDs for the metabolite
pools in each compartment. To do this we first describe the
contribution of a metabolite to each fraction. This is a function
of the metabolite pool size and the presence of the compart-
ment in the fraction, as described by Eq. 10:

F i;j ¼ Ai � Ei;j (10)

where Fi,j is the contribution of metabolite A of compartment i
to fraction j, Ai is the pool size of the metabolite in compart-
ment i, and Ei,j is the relative compartmental activity of com-
partment i in fraction j. The fractional contribution can then be
normalized such that

Bi;j ¼ Ai � Ei;jX
i
Ai � Ei;j

(11)

Using this relationship we can write calculated fractional MIDs
as a function of Bi,j and the actual compartmental MIDs:

MIDcalc;j ¼
X

i
Bi;j �MIDi (12)

This problem can then be solved for all MIDi and Ai simulta-
neously using a nonlinear least-squares fitting to minimize the
difference between the calculated fractional MIDs for all frac-
tions and those observed experimentally, and confidence inter-
vals can be obtained accordingly.

6. For A. thaliana, the NAF gradient range to achieve maximum
separation of biomass is 1.43–1.62 g/cm3 [22]. For soybeans,
this range has been found to be 1.28–1.59 g/cm3 [44].

7. The split ratio (in split mode) or purge activation time (in splitless
mode) can be varied to achieve total ion counts in the desired
range. Split mode is appropriate for concentrated samples while
splitless mode is most appropriate for dilute samples. Typical split
ratios vary from 1:5 to 1:100, with 1:10 representing a good
initial value. Typical purge times range from 0.5 to 2 min, with
1 min representing a good initial value. Note that GC inlet liners
are specific for either split or splitless operation and are not
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interchangeable. Also note that when using splitless mode, the
initial column temperature should be near or below the boiling
point of the solvent in which the sample is dissolved [42].

8. The optimal linear velocity is in the range 20–40 cm/s for
helium. Agilent’s FlowCalc tool or the instrument control
software can help determine what the linear velocity will be
for a particular combination of flow rate, column diameter,
temperature, and pressure.

9. This step may be necessary for dilute samples in order to ensure
complete conversion. However, it may be skipped for concen-
trated samples.

10. In order to dissolve tributylamine completely in water, the
tributylamine and acetic acid are first mixed together in a dry
flask before the requisite amount of ultrapure water is added.
The solution is then filtered through a 0.45 μm membrane
prior to use. The final pH should be 4.5–5.

11. To increase sensitivity, the method should be divided into
multiple time segments with different MRM transitions
scanned in each interval. Dwell time of each transition should
be optimized such that the total cycle time in each time seg-
ment does not exceed 2 s. This will provide at least 10–15 scans
of each chromatographic peak as it elutes from the column.

12. Networks used for MFA typically include glycolysis, pentose
phosphate pathway, amino acid metabolism, TCA cycle, and
various amphibolic pathways that interact with the TCA cycle.
This backbone of central metabolic pathways may be further
augmented by additional reactions of interest to a particular
investigation. Some helpful online public libraries include
Kyoto Encyclopedia of Genes and Genomes (KEGG; http://
www.genome.jp/kegg/), BioCyc (http://biocyc.org/), meta-
TIGER (http://www.bioinformatics.leeds.ac.uk/metatiger/),
ENZYME (http://enzyme.expasy.org/), and BRENDA
(http://www.brenda-enzymes.info/).

13. Blocks are defined by sets of EMUs whose MIDs are mutually
dependent within the context of the EMU reaction network.
The EMUs are arranged into blocks where the EMU reaction
network is regarded as a directed graph, where the nodes
represent EMUs and edges represent EMU reactions. An
N � N adjacency matrix is constructed for the directed
graph, where N is the total number of EMUs. A nonzero
entry a(i, j) of the adjacency matrix indicates the dependence
of the ith EMU’s MID on the jth EMU’s MID. A Dulmage–
Mendelsohn decomposition is performed on the adjacency
matrix, returning an upper block triangular matrix from
which the diagonal blocks are extracted. Blocks can be arranged
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so that each is a self-contained subproblem that depends on the
outputs of previously solved blocks, creating a cascaded system.

14. Several tools have been recently developed for flux visualization
in the context of metabolic networks, such as FluxMap [45],
FluxViz [46], fa-BINA [47], Omix [48], BioCyc Omics Viewer
[49], Reactome Skypainter [50], Pathway Projector [51],
MetaFluxNet [52], and OptFlux [53].

15. Abbreviations: 3PGA, 3-phosphoglycerate; αKG, alpha-
ketoglutarate;CIT, citrate;DHAP, dihydroxyacetonephosphate;
F6P, fructose-6-phosphate; FBP, fructose 1,6-bisphosphate;
FUM, fumarate;G6P, glucose 6-phosphate;GAP, glyceraldehyde
3-phosphate; ICT, isocitrate; MAL, malate; PEP, phosphoenol-
pyruvate; PYR, pyruvate;R5P, ribose 5-phosphate;RU5P, ribu-
lose 5-phosphate; RUBP, ribulose 1,5-bisphosphate; S7P,
sedoheptulose 7-phosphate; SUC, succinate; X5P, xylulose
5-phosphate.
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Appendix: Simple Network Example for INST-MFA Calculations

A simple metabolic network appears in Fig. 6 as an example of how to
construct the stoichiometric matrix S, identify the set of EMUs
required to simulate MIDs of measured metabolites, and set up

Fig. 6 Simple metabolic network used to illustrate the decomposition into EMUs.
Atom transitions for the reactions in this model are given in Table 3. The network
fluxes are assumed to be constant since the system is at metabolic steady state.
Extracellular metabolite A is assumed to be at a fixed state of isotopic labeling to
which intracellular metabolites B, C, D, E, F, and G adapt over time
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dynamic isotopomer balances on these EMUs. Table 3 delineates the
atom transitions for the network. In this network example, metabo-
lite A is the sole substrate and metabolite G is the only final product.
The intermediary metabolites B, C, D, E, and F are assumed to be at
metabolic steady state but isotopically nonstationary.

The stoichiometric matrix S is shown below, which has k ¼ 5
intermediary metabolites and j ¼ 8 fluxes, resulting in a 5 � 8
matrix:

S ¼

1 �1 0 0 �1 1 0 0
0 1 �1 1 0 0 0 0
0 0 1 �1 1 �1 �1 0
0 �1 0 0 0 0 1 0
0 0 1 �1 0 0 0 �1

2
66664

3
77775

Therefore, S�v ¼ 0 is expressed in vector form as

v1 � v2 � v5 þ v6
v2 � v3 þ v4

v3 � v4 þ v5 � v6 � v7
� v2 þ v7

v3 � v4 � v8

2
66664

3
77775 ¼ 0

A systematic method of EMU network decoupling in which
metabolite units are grouped into mutually dependent blocks is
described through this simple network example. For this example,
we will set up the simplest possible model to simulate the MID of
metabolite C, i.e., EMU C123. First, we need to identify all the
possible EMUs that contribute to the formation of C123—in this
reaction model, C123 is formed from the condensation of B12 + E1

and D12 + F1 in reactions 2 and 4, respectively. This is recorded and
the process is then repeated for all new EMUs, starting with the
largest EMU in size; in this case, all EMUs of size 3 have already
been identified. Next, the process is repeated to determine all the

Table 3
Stoichiometry and atom transitions for the reactions in the example
metabolic network

Reaction number Reaction stoichiometry Atom transitions

1 A ! B ab ! ab

2 B + E ! C ab + c ! abc

3 and 4 C $ D + F abc $ cb + a

5 and 6 B $ D ab $ ab

7 D ! E + G ab ! b + a

8 F ! G a ! a
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EMUsof size 2 thatwere previously identified, startingwithD12.D12

is formed from two different reactions—from B12 in reaction 5 and
fromC23 in reaction 3. Following this, we determine which reactions
form C23; C23 is formed from D12 in reaction 4 and B2 + E1 in
reaction 2. Finally, we need to determine which reactions form B12.
B12 is formed fromA12 andD12 in reactions 1 and 6, respectively. A12

is a network substrate and is not produced by any other reactions and
D12 has already been considered in the previous step. Therefore, all
EMU reactions of size 2 have been identified. The process is repeated
once again for EMUs of size 1, until all the EMUs have been traced
back to network substrates or previously identified EMUs. Table 4
shows the complete EMU decomposition of this system, which
involves 24 EMU reactions connecting 16 EMUs.

After EMU decomposition, the reaction network can be fur-
ther decoupled into blocks, which group together minimal sets of

Table 4
Complete list of EMU reactions generated for metabolite C

Reaction number EMU reaction EMU reaction size balance Block

2 B12 + E1 ! C123 2 + 1 ¼ 3 6
4 D12 + F1 ! C123 2 + 1 ¼ 3 6

2 B2 + E1 ! C23 1 + 1 ¼ 2 5
4 D12 ! C23 2 ¼ 2 5
3 C23 ! D12 2 ¼ 2 5
5 B12 ! D12 2 ¼ 2 5
6 D12 ! B12 2 ¼ 2 5
1 A12 ! B12 2 ¼ 2 5

2 B1 ! C1 1 ¼ 1 4
4 F1 ! C1 1 ¼ 1 4
3 C1 ! F1 1 ¼ 1 4

2 E1 ! C3 1 ¼ 1 3
4 D1 ! C3 1 ¼ 1 3
3 C3 ! D1 1 ¼ 1 3
5 B1 ! D1 1 ¼ 1 3
6 D1 ! B1 1 ¼ 1 3
1 A1 ! B1 1 ¼ 1 3

7 D2 ! E1 1 ¼ 1 2

2 B2 ! C2 1 ¼ 1 1
4 D2 ! C2 1 ¼ 1 1
1 A2 ! B2 1 ¼ 1 1
6 D2 ! B2 1 ¼ 1 1
5 B2 ! D2 1 ¼ 1 1
3 C2 ! D2 1 ¼ 1 1

Subscripts denote atoms that are part of their respective EMUs. The EMU reactions are

also divided into their respective blocks after Dulmage–Mendelsohn decomposition has

been applied
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mutually dependent metabolite units that must be solved simulta-
neously. Figure 7 shows the EMU network decomposition for the
simple network example after block decoupling. The blocks are
arranged so that each one is a self-contained subproblem, which
will depend on the outputs of the previously solved blocks. There-
fore, EMUs in block 1 should first be solved, then block 2, etc.

The EMU reactions obtained from network decomposition
and block decoupling form the new basis for generating system
equations. The decoupled blocks can be arranged into a cascaded
system of ODEs with the following form, as described in
Subheading 3.9:

Cn � dXn

dt
¼ An � Xn þ Bn � Yn

The concentration matrix Cn is a diagonal matrix whose ele-
ments are pool sizes corresponding to EMUs represented in Xn. Xn

comprises row vectors that represent the MIDs of each EMU and
dXn/dt is the time derivative of Xn. Analogously, the input matrix
Yn also comprises row vectors that represent MIDs of EMUs that
have been previously calculated. The system matrices An and Bn

come from calculating the “true” flux vectors (v) based on the
chosen free fluxes (u) and null space matrix (N). Furthermore, in
the decoupled blocks, the full MID of products formed from
condensation reactions can be obtained from the convolution (or
Cauchy product, denoted by “�”) of MIDs of preceding EMUs. In
the case of C123, these MIDs are B12 and E1 or D12 and F1, i.e.,
C123 ¼ B12 � E1 or C123 ¼ D12 � F1. The following equations
represent the system of ODEs for the simple network example:

CC 0 0

0 CB 0

0 0 CD

2
64

3
75

dC2

dt
dB2

dt
dD2

dt

2
6666664

3
7777775
¼

�v2 � v4 v2 v4

0 �v1 � v6 v6

v3 v5 �v3 � v5

2
64

3
75

C2

B2

D2

2
64

3
75

þ
0

v1

0

2
64

3
75 A2½ 	

CE½ 	 dE1

dt

� �
¼ �v7½ 	 E1½ 	 � v7½ 	 D2½ 	

CC 0 0

0 CD 0

0 0 CB

2
64

3
75

dC3

dt
dD1

dt
dB1

dt

2
6666664

3
7777775
¼

v2 þ v4 �v4 0

� v3 v3 þ v5 �v5

0 �v6 v1 þ v6

2
64

3
75

C3

D1

B1

2
664

3
775þ

v2 0

0 0

0 v1

2
64

3
75 E1

A1

" #
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CC 0

0 CF

� � dC1

dt
dF1

dt

2
664

3
775 ¼ �v2 � v4 v4

v3 �v3

� �
C1

F1

� �
þ v2

0

� �
B1½ 	

CC 0 0

0 CD 0

0 0 CB

2
64

3
75

dC23

dt

dD12

dt

dB12

dt

2
66666664

3
77777775
¼

�v2 � v4 v4 0

v3 �v3 � v5 v5

0 v6 �v1 � v6

2
64

3
75

C23

D12

B12

2
664

3
775

þ
v2 0

0 0

0 v1

2
64

3
75 B2 � E1

A12

� �

Fig. 7 (a) EMU network decomposition for simple example network (Fig. 6)
generated to simulate the labeling of metabolite C. The EMU network was
decoupled based on EMU size and network connectivity. (b) EMU network
decomposition for the same network using block decoupling. Subscripts refer
to the atoms that are contained within the EMU
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CC½ 	 dC123

dt

� �
¼ �v2 � v4½ 	 C123½ 	 þ v2 v4½ 	 B12 � E1

D12 � F1

� �

Solving this system of ODEs will simulate the EMU labeling
trajectories needed to calculate the time-dependent MID of metab-
olite C. The flux and pool size parameters can then be adjusted
iteratively using an optimization search algorithm to converge on
parameter values that minimize the lack of fit with experimental
mass isotopomer data.
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