A Microfluidic Diode for Sorting *C. elegans*

Tao Honga, Lijie Yangb, Richard Muc, Guillermo Sanchezd and Deyu Lib

Queensborough Community Collegea, City University of New York, Bayside, NY 11364
Department of Mechanical Engineeringb, Vanderbilt University, Nashville, TN 37235
Life and Physical Sciences Departmentd, Fisk University, TN 37208
Hughes-Kellogg Biology Research Laboratory, Fisk University, TN 37208

Introduction

- **Purpose of sorting C. elegans in different developmental stages**
 - C. elegans, a nematode, is a powerful model organism that develops from a single cell to a complex adult organism.
 - Sorting C. elegans can help study the effects of different developmental stages on behavior.

- **State of art sorting strategy of C. elegans by microfluidic platforms**
 - Microfluidic devices can be used for sorting C. elegans due to their ability to manipulate small volumes of fluid.

- **Our sorting strategy: Based on crawling behavior in different sized microfluidic diodes**
 - Microfluidic diodes can be designed to sort C. elegans based on their crawling behavior in different channels.

Methods

- **Fabrication of microfluidic devices**
 - The microfluidic diodes are fabricated using standard microfabrication techniques.

- **Source of unsynchronized C. elegans colony**
 - The unsynchronized C. elegans colony is used for experiments to study the effects of differences in size and behavior.

Design and Result

- **Different crawling performance of C. elegans in curved and straight channels**
 - Time-lapse photographs show the crawling behavior of C. elegans in curved and straight channels.

- **Microfluidic diode for C. elegan sorting**
 - A microfluidic diode is designed to sort C. elegans based on their crawling behavior.

Conclusion

- C. elegans (L4 and adult) have a spontaneous ability to compress themselves 20%-50% to penetrate the curved channels, but they cannot penetrate the straight channels with the same width under the same flow rate.

- After sorting process, the C. elegans from L4 and Adult (diameter: 31-72 μm) are divided in 7 sections based on their diameters. The diameter in average diameter of C. elegans in each section is about 5 μm.

- The average critical compressive ratio increases while the width of the channel decreases, which demonstrates that larva C. elegans can compress more than adult C. elegans in the unidirectional channels.

- Increasing flow rate might result in a significant enhancement of average critical compressive ratio in some specific channels.

Future Work

- Widen the region of sorting by fabricating channel arrays in smaller width.

- Design a collecting system for repeatable use of the device.

- Study the impact of curved channels’ shape and the length of the straight channels on the diode’s property.

- Introduce chemical stimuli to the C. elegans trapped in different sections of the original device and study their difference of response.

Acknowledgements

We thank for the financial support by the following funding, ARO: W911NF-15-1-0441; NEEC: N00174-16-C-0008 and D00: W911SR-14-2-0001, sponsored by the Edgewood Chemical and Biological Center (ECBC). Specially thank to Gfan Zhang and Lin Yang for comments and discussions, and the help from Yin Zhang in the experiment.

References