α-cell Response to Low Glucose

Keisha Carr¹, Tara Schwetz², Dave Piston²
¹University of Maryland, Baltimore County, ²Vanderbilt University Medical Center

Background
- Islet of Langerhans is made up of α-, β- and other cells
 - the pancreas
 - the islet
 - the β-cell
- Islet plays a role in glucose homeostasis
- α-cell response to glucose is poorly understood
- Studying NAD(P)H and calcium oscillations

Ca²⁺ oscillations
- Measured at 0.1, 0.5, 1 and 5 mM glucose
- Active cells: Cells that are oscillating or showing steady increase in calcium
- Fluo4-AM: cell permeable calcium indicator dye

NAD(P)H
- Dose response from 0.01 mM to 5 mM glucose
- NAD(P)H is autofluorescent

Equipment
- Mouse model
 - Sacrificed at ~8 weeks
 - tdRFP under control of the glucagon promoter
 - Enzymatic digestion of acinar tissue to isolate islets
- Microfluidic device
- Confocal microscope

Dose response from 0.01 mM to 5 mM glucose
NAD(P)H is autofluorescent

Figure 1: Islet composition.
Figure 2: Glucose homeostasis cycle.

α-cell Response to Low Glucose

Summary
- Minimal activity at low levels of glucose
- Increases as glucose concentration increases
- Suggests left-ward shift compared to β-cells
- Next steps:
 - Glucagon secretion
 - Lower levels of glucose (0.01 mM)

References

Funding
This research was funded in part by NSF grant DMR-1005023 and NIH grants DK53434, DK85064 and DK20593.