Good Vibrations: Plasmon-Exciton Coupling in Gold/Molybdenum Disulfide Hybrid Systems

Michael Reynolds\(^b\), Jed Ziegler\(^a\), AKM Newaz\(^a\), Kirill Bolotin\(^a\), Richard Haglund\(^a\)

\(^a\) Department of Physics and Astronomy, Vanderbilt University

\(^b\) Department of Physics, Columbia State Community College

Introduction

Plasmons
- Coupling of photons to free electrons within metals
- Plasmon resonances defined by nanoparticle geometry
- Nanoscale regions of intense electric fields
- Generates coherent oscillations of the electron cloud.

Molybdenum Disulfide
- Mechanically exfoliated from molybdenite
- Three atom thick crystalline structure
- Highly translucent
- Optically excitable
- Strong exciton binding energy (0.5 eV)

Objective

Explore exciton-plasmon hybrid system coupling in 2-dimensional materials.
- Determine enhancement of intrinsic optical properties of MoS\(_2\).
- Attempt to produce exotic bound exciton-plasmon states.

Results: Enhanced Photoluminescence

- Photoluminescence Comparison
 - Both A and B exciton peaks are enhanced in presence of gold nanorods.

Results: Exciton Energy Shift

- Photoluminescence Comparison
 - Exciton peaks blue shift in presence of gold nanorods.

Conclusions

- Enhancement of PL at least indicates weak plasmon-exciton coupling (Purcell effect).
 - Here the plasmon effectively acts as an antenna for photons.
- Energy shift in PL implies a stronger degree of coupling.
 - The blue shifted peak could be the high energy Rabi splitting peak, an indicator of strong coupling.
 - The HSQ spacer layer ensures that blue shift is not due to direct electron transfer.
 - The suspected coupling mechanism is coherent dipole-dipole coupling.

Future Work

- Vary HSQ thickness to determine distance dependence of plasmon-exciton coupling.
- Extinction microscopy to see Rabi splitting or Fano resonances further supporting strong binding.
- Explore the extent of non-resonant vs on-resonant coupling between MoS\(_2\) and plasmons.

Methods

- Mechanically exfoliated MoS\(_2\) flake onto silicon and glass substrates
- Applied HSQ spacer layer onto flake to reduce potential hot electron transfer
- Patterned nanorods using e-beam lithography
- Deposited gold using thermal evaporation
- Measured photoluminescence spectra

Acknowledgments

This work was supported by NSF-TNSCoRE DMR-0907619

Samples for this work were prepared at the Vanderbilt Institute of Nanoscale Science and Engineering using facilities renovated under NSF ARI/R2 DMR-0963361.

References

