Simulation of High Harmonic Generation in Helium due to Bichromatic Counterrotating Circularly Polarized Laser Fields

Clayton Blythe1,2, Jorge Salas1,2, Cody Covington1,2, and Kalman Varga1,2

1Vanderbilt University Department of Physics and Astronomy, Nashville, TN
2Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, TN

\textbf{Introduction}

- High Harmonic Generation (HHG) has been used for decades as a source of high energy photons
- HHG due to bichromatic circular polarization enables analysis of symmetry in ultrafast systems such as atoms and molecules
- Third harmonic selection rule is expected
- Consecutive attosecond bursts of linear polarization is predicted \cite{1}

\textbf{Methods}

\textbf{Stochastic Variational Method (SVM)}
- Ground state is approximated with 300 explicitly correlated Gaussian basis functions
- Crank-Nicholson time propagator is then applied

\textbf{Time-Dependent Density Functional Theory}
- Uses a real-space grid representation
- Taylor time propagator is employed

\textbf{Bichromatic Counterrotating Laser Field}

\[E(t) = E_{ir} f(t) [\cos(\omega t) + \cos(2\omega t)]\hat{x} + E_{ir} f(t) [\sin(\omega t) - \sin(2\omega t)]\hat{y} \]

\textbf{Parameters}

Parameters are in atomic units unless otherwise indicated.

\begin{itemize}
 \item Laser frequency \(\omega = 0.0569 \) (wavelength = 800 nm)
 \item Laser electric field \(E_{ir} = 0.0215 \) (\(I = 1.658 \times 10^{13} \) W/cm\(^2\))
 \item Laser envelope \(f(t) = \sin^2 \) (24 fs fwhm)
 \item Propagation time \(T = 1033 \) (48 fs)
 \item Absorbing boundary \(x_0 = \pm 36 \)
 \item Keldysh parameter \(\gamma = 3.56 \) (dimensionless)
\end{itemize}

\textbf{Results: Harmonics}

*Colors mark harmonics corotating (red) and counterrotating (blue) with the fundamental

\textbf{Conclusions}

- SVM accurately describes high harmonic generation
- Time Dependent Density Functional Theory failed to characterize higher harmonics
- Third harmonic selection rule confirmed
- Three linearly polarized attosecond bursts generated per cycle
- Further investigation of pulse shape, frequency, and intensity is warranted

\textbf{References & Acknowledgements}

- Varga Group for fruitful discussions
- National Science Foundation Grant: DMR - 1263182
- REU Site: Vanderbilt VINSE Program