


Disclosure V_Z'/E/RE'

* VIIBRE is funded in part by the NIH’s National Center for Advancing Translational Sciences
(NCATS) and National Institute of Neurological Disorders and Stroke (NINDS) under Award
Number 5UG3TR002097-02 and 3UG3TR002097-02S51, NCATS Award Number
1U01TR002383-01, National Cancer Institute (NCI) grant U01CA202229, and NCATS contract
HHSN271201700044C (through CFD Research Corporation); the U. S. Environmental
Protection Agency (EPA) Assistance Agreement No. 83573601, Eli Lilly and Company; the
Defense Advanced Research Projects Agency (DARPA) grant W911NF-14-2-0022; the Center
for the Advancement of Science in Space (CASIS) contract GA-2016-236 (through the
University of Pittsburgh); and the National Science Foundation (NSF) grant CBET-1706155.

 Earlier support was provided by NIH grants UH2/UH3TR000491, UH3TR000503,
UH3TR000504, RO1HL118392, RO1HL095813, RO1ES016931, and RO1AR056138, contract
HHSN271201600009C (to CFD Research Corporation), and other grants through NHLBI,
NINDS, and NIAID; Defense Threat Reduction Agency (DTRA) grants HDTRA1-09-0013 and
CBMXCEL-XL1-2-001 (through two LANL subawards); DARPA grant W911NF-12-2-0036;
Intelligence Advanced Research Projects Agency (IARPA) contract 2017-17081500003; and
AstraZeneca UK Limited. We participated in the NIH/NCATS Tissue Chips Testing Centers
program through the Massachusetts Institute of Technology and Texas A&M University.

» The authors of this research have no financial or other interests which pose conflicts of interest.
Licenses to the Vanderbilt pump and valve technologies have been issued to KIYATEC, Inc.
and CN Bio Innovations, which has also licensed the MicroFormulator. Our MicroClinical
Analyzer patents have been licensed to Agilent. John Wikswo is an Inaugural Member of the
Scientific Advisory Board of BiOasis Technologies, Inc.

* The views expressed in this document are solely those of the authors and do not necessarily
reflect those of any of the funding agencies or companies. The EPA does not endorse any
products or commercial services mentioned.




Abstract ]'/_Z' ORE

Deconvolving the multiscale, spatiotemporal complexity of biology
requires not only understanding the governing laws of physics and
chemistry, but also decoding billions of years of genetically encoded
history. Simple, passive observations cannot expose the nested,
redundant levels of regulation in the historical instruction set, and
active interventions are needed to disable specific biological functions
to expose others. The concept of the hermeneutic circle applies to
biology — one cannot understand the whole until one understands the
parts, and one cannot understand the parts without understanding the
whole. In this context, coupled microphysiological systems meet the
criteria for a successful toy model: complicated enough to recapitulate
key regulatory processes but simple enough to understand. Revealing
the functions of such coupled in vitro systems will require untargeted
analysis of the genome, transcriptome, proteome, lipidome,
Interactome, and metabolome at the level of cells and tissues, which
places demands on the accessibility and interconnection of each
micro-organ and establishes lower limits on their sizes. The grand
challenge is to devise and integrate the requisite cells, microfluidic
bioreactors, sensors, analytical techniques, closed-loop controls, and
mathematical models (which may be underspecified). Machine Iearnlng
and automated design of experiments may be critical to closing the
hermeneutic circle.
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Anatomy

Isolated  V.I/=RE
Organs )

Physiology

O. Langendorff. Untersuchungen am Uberlebenden
Saugethierherzen. Pflug.Arch.Eur.J.Phy. 61 (6):291-332, 1895,
as shown in H.G. Zimmer. The isolated perfused heart and its
pioneers. News Physiol.Sci. 13:203-210, 1998.

Conclusion: Body temperature affects
heart rate. Missing from the image: Dog
s . with cannulated heart & lungs, cast

Martin HN. The direct influence of gradual variations of temperature iI’Oﬂ, water-filled pan, and Bunsen

upon the rate of beat of the dog's heart. Philos Trans R Soc London
1883 Jan 1;174:663-88. burners...



DUAL PERFUSION A mimivo =

FOR  LIWWVER AND KIDNEY

1961

Avis FR. Investigations of liver and kidney. Design of a
dual apparatus for research study. Science Teacher
1961;28(1):14-8.
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* Neely JR, Liebermeister H, Battersby EJ, Morgan HE. Effect
of pressure development on oxygen consumption by isolated
rat heart. Am J Physiol 1967 Apr 1;212(4):804-14.

* Neely JR, Liebermeister H, Morgan HE. Effect of pressure
development on membrane transport of glucose in isolated
rat heart. Am J Physiol 1967;212(4):815-22.




Anatomy

Isolated  V.I/zRE
Organs )

Animal

Physiology
Organ

Today

90 cm

Holzer JR, Fong LE, Sidorov VY, Wikswo JP and
Baudenbacher FJ. High resolution magnetic images
of planar wave fronts reveal bidomain properties of Courtesy of Desmond Radnoti of Radnoti LLC

cardiac tissue. Biophys.J. 87 (6):4326-4332, 2004.
In regular use by academics and pharma
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Henrietta Lacks

http://www.lacksfamily.net/images/image359.jpg

« Novick A and Szilard L. Experiments with the Chemostat on Spontaneous Mutations of Bacteria. PNAS 36 (12):708-719, 1950.
¢ Aaron. Novick and Leo Szilard. Description of the Chemostat. Science 112 (2920):715-716, 1950.
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http://www.iubmb-nicholson.org/chart.html
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1930’s
to
Today

VI “RE

Crucible of Science:
The Story of the Cori
Laboratory, John H.

Exton, Oxford, 2013
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1952

http://www.insight.mrc.ac.uk/2013/04
/25/behind-the-picture-photo-51/

Rosalind E. Franklin. Structure of Tobacco
Mosaic Virus. Nature 175 (4452):379-381, 1955.
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The Human L{I/;RE
Genome

Sequenced

2003

http://www.wired.com/2008/07/british-institu/

http://nsaunders.wordpress.com/2011/12/22/sequencing-
for-relics-from-the-sanger-era-part-1-getting-the-raw-data/
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Animal G
Today
Organ
Cell

Network

Molecule
1000 Gb max output, 4000M max read number, 2x125bp max
read length, 600 gigabases (Gb) per day per system
http://systems.illumina.com/systems/hiseq_2500_1500.ilmn

Genome
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Conclusion: Technology
drives major advances
In biology!
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Why Is biology so complex?
* The human genome codes for @ e
~20,000 unique proteins ~
 RNA splicing and proteolysis may g
result in 50,000 to 500,000
unique proteins.

 Post-translational modifications s _
may increase this to a million ... =g e
* An individual cell expresses

between 10,000 to 15,000
different proteins at any one time.

e Proteins interact with each other.

Human proteome, and its binding
interactions - Simonis and Vidal.



Why Is biology so complex, con’t?
e Today, one can easily detect 100,000
chemical species in 100 yL of rat serum.

e Cells are NOT well-stirred bioreactors but
have anomalous diffusion and active
transport.

e 10° - 10! interacting cells in some organs.
* We must consider the microbiome.

* Cell signaling is dynamic, non-lineatr,
multiscale, redundant, and has positive
and negative feedback.

3.1 x 3.2 x1.2 um3beta cell
Brad Marsh, PNAS, 2001




Why Is biology so complex, con’t?
e Today, one can easily detect 100,000
chemical species in 100 yL of rat serum.

e Cells are NOT well-stirred bioreactors but
have anomalous diffusion and active
transport.

e 10° - 10! interacting cells in some organs.
* We must consider the microbiome.

* Cell signaling is dynamic, non-lineatr,
multiscale, redundant, and has positive
and negative feedback.

 Metabolism has 8,000 reactions.

 Models might need Avogadro's number of
PDEs, i.e., a Leibniz of PDEs (1 L = N,).

 We need new experimental approaches.

UPL ESI-IM-MS John McLean




Biology spans lots of space and time
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Part of the
problem is that

human biology

Is COMPLEX.

Organs talk to each
other, but we seldom
hear what they are
saying.



Cardiovascular
Heart
Blood

Blood vessels
Digestive
Salivary glands
Esophagus
Stomach
Liver
Gallbladder
Pancreas
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Julia Wikswo
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Complexity from multiscale interactions
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around an attractor in 104-10°
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extended trajectories in that
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A possible failure mode VI =RE

Ontological failure: The phenomenon you are
Interested In requires elements or laws
outside of the set you have been given.

D. Bray. Reductionism for biochemists: how to survive the protein jungle. Trends
Biochem.Sci. 22 (9):325-326, 1997.

730
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he solution to ontological failure

Get more data...

731



VI “RE

It's the numbers....

Where do we get a mole of numbers?

732



The Catch VI rE

Modeling of a single mammalian cell may requiré
>100,000 dynamic variables and equations, maybe >
1,000,000

Cell-cell interactions are critical to system function
10° - 101! interacting cells in some organs

Cell signaling involves highly DYNAMIC biochemical
cascades with positive and negative feedback

Multiple, overlapping regulatory mechanisms
Many of the interactions are nonlinear

Models might have a Leibnitz (1 L = N_) of PDEs
The data don’t yet exist to drive the models
Hence we need to experiment...

736
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Helmholtz on Cells VI =RE

“The behavior of living cells should be accountable in
terms of motions of molecules acting under certain
fixed force laws.”

Herman von Helmholtz, 1870

Quoted in Max Delbruck, “A Physicist looks at biology”
Trans. Conn. Acad. Arts Sci. 38:173-190, 1949.



Bohr on Complementarity VL«*”ERE

“... we should doubtless kill an animal if we tried to
carry the investigation of its organs so far that we
could describe the role played by single atoms in vital
functions.

N. Bohr. “Light and Life,”
Nature 131 (3309):457-459, 1933.



Bohr on Complementarity VL«*”ERE

In every experiment on living organisms,
there must remain an uncertainty as regards the
physical conditions to which they are subjected

N. Bohr. “Light and Life,”
Nature 131 (3309):457-459, 1933.



Bohr on Complementarity VL«*”ERE

and
the iIdea suggests itself that the minimal freedom we
must allow the organism in this respect is just large
enough to permit it, so to say, to hide its ultimate
secrets from us.”

N. Bohr. “Light and Life,”
Nature 131 (3309):457-459, 1933.



Schrédinger on Life VL«*"ERE

“Present day physics and chemistry could not possibly
account for what happens in space and time within a
living organism.”

“... aliving organism ... can only keep ... alive ... by
continually drawing from its environment negative
entropy.”

Schrodinger, What is Life, 1943



Perutz on Schrodinger VL«*”ERE

“When | was invited to review the influence of What is
Life? | accepted with the intention of doing honor to
Schrodinger’'s memory.

M. F. Perutz. Physics and the riddle of life.
Nature 326 (6113):555-558, 1987.



Perutz on Schrodinger VL«*”ERE

To my disappointment, a
close study of his book and of the related literature
has shown me that

M. F. Perutz. Physics and the riddle of life.
Nature 326 (6113):555-558, 1987.



Perutz on Schrodinger VL«*”ERE

what was true in his book was not
original, and most of what was original was known not
to be true even when it was written.”

M. F. Perutz. Physics and the riddle of life.
Nature 326 (6113):555-558, 1987.



Perutz on Schrodinger VL«*”ERE

what was true in his book was not
original, and most of what was original was known not
to be true even when it was written.”

M. F. Perutz. Physics and the riddle of life.
Nature 326 (6113):555-558, 1987.

What was original was from Max Delbruck.
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What makes biology so
different from physics,
chemistry, and engineering?



What_ makes biol_ogy different from V_Z'/’JBRE’
physics or chemistry? ]
Physics and chemistry describe dynamic interactions

In terms of fundamental or phenomenological laws that
govern the state of the matter being studied.

*Ohm’s law, Hooke’s law, the Standard Model, ... conservation of mass, Dalton’s law, quantum mechanics ...

Biology has laws, but the operation of every living
organism is determined not only by the laws of biology,
physics and chemistry, but also by historic instructions
that may be specific to each individual organism.

“. .. any living cell carries with it the experiences of a
billion years of experimentation by Iits ancestors. You
cannot expect to explain so wise an old bird in a few
simple words.”

Max Delbriick, “A Physicist Looks at Biology,” 1949

748
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Build untargeted
s mass spectrometers,

and you will have
enough data.
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variables?
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A possible failure mode  VI/zrE

There Is a second possible failure mode

Epistemoloqgical failure: You have enough
elements and the laws do apply, but you
yourself cannot understand the explanation
that they provide.

D. Bray. Reductionism for biochemists: how to survive the protein jungle. Trends
Biochem.Sci. 22 (9):325-326, 1997.

750



Houston, we have a problem. VI/zr=

 The human brain can process only seven pieces of
data at a time.

“...the seven-point rating scale, the seven
categories for absolute judgment, the seven
objects in the span of attention, and the seven
digits in the span of immediate memory...”

G.A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on our
Capacity for Processing Information,” Psychological Review, 63, 81-97 (1956).

751



A Really Hard Problem V.Z;/BRE

If the human brain were so simple
that we could understand It,

we would be so simple

that we couldn't.

Emerson M. Pugh, 1938

752



Yet one more Really Hard Problem VI/}C’RE'

Pugh’s observation applies to biology:

Human biology may be
too complicated for
humans to fully
comprehend.

John Wikswo

753
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VIIBRE 2001
Instrumenting and Controlling Cells
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Machine Learning: A robot that can VI/};RE
infer a model of “itself” ’

Self-Model synthesis : ?Eloratory Action synthesf\ A r Ob Ot can b e pr o) gr amme d
" a to conduct experiments to
**—“% derive a model of itself.

My hypothesis: Machine
learning and model
iInference with automated

> & experimentation can be
Targ_et Behavior synthesis eXtended from rObOtS to
TH o bioreactors.

(o{h.
#

N j /
J. Bongard, V. Zykov, and H. Lipson, Resilient

Machines Through Continuous Self-Modeling,
Science, 314, 1118-1121, 2006 .




Note to self: 2006

e Can I design and build a
hybrid silicon/biological
system that proposes
and generates models
and conducts
experiments on itself to
identify the underlying
equations that govern
cellular dynamics?

o Extracellular: $3 - 4
million and 3 - 5 years

* Intracellular: $15 - 20
million and 5 — 10 years




VI “RE

First step — control biology!



INPUT ACTUATORS

e Chemical
 Electrical
» Genetic
 Mechanical
 Optical
e Thermal
» Scaffolding
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From: LeDuc, Messner, Wikswo. How do controls approaches
enter into biology? Annual Reviews of BME, 2011.
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» Apoptosis
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» Gene / Protein Expression
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* Motility
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Yang et al., PLoS1, 2011




e —

Model-driven control of biological systems

 Multiple, fast
Sensors

e Intra- and
extracellular
actuators

for controlled
perturbations

e Algorithms that cree
feedback loops \\\
automatically probe
the system and repd
the feedback signal.

Wikswo et al., IEE Proc Nanobiotechnol. 12 RO 2O - 260



Artificial Intelligence, per Wikipedia VL’JBRE

 Narrow Al (or "weak Al*) is the use of software to
study or accomplish specific problem solving or
reasoning tasks. Weak Al, in contrast to strong Al,
does not attempt to simulate the full range of human
cognitive abilities. (Sirl, Alexa...)

e Strong Al is artificial intelligence that matches or
exceeds human intelligence — the intelligence of a
machine that can successfully perform any intellectual
task that a human being can. ... Strong Al is
associated with traits such as consciousness,
sentience, sapience and self-awareness observed In
living beings. (Turing test...)



Narrow versus Strong Automated Biology VL"”ERE
 Narrow AB: the use of software to study or
accomplish specific laboratory biology tasks
— High throughput screening (HTS)
— Automated microscopy (ImageJ)
— Biomedical data mining (KEGG, MAGINE, SIMONE)
— Computer-aided medical diagnosis

e Strong AB: automated biological experiments driven
by autonomous, machine-learning systems
— ldentification of orphan gene function (King et al.)
— Inference of metabolic networks (Schmidt et al.)
— Optimal design of experiments
— Development of IPSC differentiation control paradigms



Strong AB: King’s Robot Scientist “Adam” V_Z'/jﬁfRE

\
4

scale: 1m

*6,657,024 optical density measurements@595nm to form 26,495 growth curves
 Formulated and tested 20 hypotheses concerning genes encoding 13 orphan enzymes

RD King et al. The Automation of Science. Science 324 (5923):85-89, 20009.



Strong AB: King’'s Robot Scientist “Eve” V_Z'/ERE

objective

compile into propositional logic

anti-malarial

[standardized synthetic
biology assays robot scientist

L —

e library —> hit

design screen confirmation

lc“rssuﬁtm“ .

targeting DHFR
inhibit-P. vivax-DHFR A inhibit-drug-resistant-P. vivax-DHFR A
= inhibit-H. sapiens-DHFR A — cytotoxic)
use synthetic biology to engineer
a set of yeast strains that compute
L the function
specification

computation
of specified assay

Chimeric yeast can inform drug
mechanism of action in mammalian cells.

Williams, et al., “Cheaper faster drug development validated by the repositioning
of drugs against neglected tropical diseases,” Royal Society Interface, 2015 764



What do we n_eed f(_)r automated V_Z'/’ERE
inference of biological models? :

e Closed-loop control of biology

« Automated design of experiments
— Cells
— Matrix chemistry and architecture
— Metabolic and signaling molecules and other clues

Quantitative measurements

— Fluorescent imaging

— Electrochemical measurements of bioenergetics
— Untargeted ion mobility-mass spectrometry

— New types of data from new sensing modalities

Automated data mining and interpretation

Organotypic 3D tissue culture, including dynamic
control of the extracellular matrix

765



Narrow versus Strong Automated Biology V.Z'f’;'”RE'
J £

e Strong AB: automated biological experiments driven
by autonomous, machine-learning systems
— ldentification of orphan gene function (King et al.)
— Inference of metabolic networks (Schmidt et al.)
— Optimal design of experiments
— Development of IPSC differentiation control paradigms



Grand Challenge: 2006

e Can we design and build
a hybrid silicon/biological
system that proposes
and generates models
and conducts
experiments on itself to
identify the underlying ...
equations that govern |27
cellular dynamics?

o Extracellular: $3 - 4
million and 3 - 5 years

* Intracellular: $15 - 20
million and 5 — 10 years




®@- Base medium

®- - Amino acids (~15)

®@- Cytokines (N>>1)

@ Growth factors(N>>1)
@ Hormones (N>>1)
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®-[glucose](t)
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7 |
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Electrical
Mechanical

NO Sensor
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Pneumatic Control
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Cover Slip /
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LeDuc, Messner, Wikswo, Annual Reviews of BME, 2011.

[ Morphology
Size, shape, optical density, motility, division,
organelle configuration
Force
Shear, tension, deformation
Intracellular Signaling (Optical)
GFP/luciferase reporters, [Ca],, pH;, V,,,
MMP, GFP FRET

Extracellular Electrolytes (Electrochemical)
[Na]e’ [Ca]ev [K]e’ [Mg]e1 [PO4]e1 [Cl]e’ [HCO3]e
Neurotransmitters (Electrochemical)
Seratonin, acetocholine, GABA, ...

Extracellular Metabolites (Electrochemical)
[glucose](t), [lactate](t), [PH](Y), [O](), NO(Y),
H,O,(t) ...

Extracellular Metabolites (GC IM-MS)
Amino acids, small metabolites, stable
isotopic markers
Surface Expression

Specific affinity probes
Soluble Gene Expression (nESI IM-MS)
Cytokines, growth factors
hormones, enzymes
Cytosolic Proteins (MALDI IM-MS)
Lipids (Cell Lysate IM-MS)

\A Gene expression (MRNA Arrays)



Symbolic-Regression and Estimation-Exploration AIgorithmsVl—/imRE
can design experiments to select best symbolic model ="

Computational
Synthesis

- L Estimation /
CruC» Exploration
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K | Ca, QD100
\ /
\Cmss Section A-A J 0, permeable
Membrane
FDMS "
R e, ]
Top Layar oo a : \
Floidic Layer SRR st AR sy
Cover Slip \ *\x
pH Sensor / \\ T~ Oniygen Sensor
SU-8 Photoresist

AMMPS

LeDuc, Messner, Wikswo, Annual Reviews of BME, 2011. 769




Inferring Metabolic Models  y1/zre

Eomttar using the SRA andEEA CFﬂRC ”

External Glucose

Target Model placed In Je
black box with 10% AP oo
: . Cytosol Glucose (S,) !
noise g v :
* i v Ve |
as, _, . 100"AS, . ATP (A,) GAP (S,) > Glycerol
dt 1+13.68* A* : Vsl
dS, 200*A,S, - |
= -6*S]-6*SN !
dt  1+13.68* A/ ‘  ADP (A,)
%:6*82—6*N282—64*83+16*A383 i
ds i Ethanol
—t4:64*83—16* ASS,-13*S,-100*N,S, +13*S, !
%:6*82—18* N,S, -100* N,S, i
dA 200* A.S Extracellular
d_t3 =-1.28% A, - 1+13.68j ;\34 +128% S, +32* AS, space External Pyruvate/
ds Acetaldehyde (S,xt)
—tf’:l.3*S4—3.1*S5 vi
Schmidt, Vallabhajosyula, Jenkins, Hood, Soni, Wikswo, and Lipson. Automated probing

and inference of analytical models for metabolic networks. Phys.Biol. 8 (5):055011, 2011.
Model adapted from P. Ruoff et al. Biophysical Chemistry 106 (2003) 179-192 771



2014: VIIBRE’'s Robot Scientist
for Automated Omni-Omics

Media
Component
Reservoirs

Estimation
Exploration

* P> - i
Electrochemical 7 > Bidirectional
e wus | Elactrochemica
' Metabolite YR T - »| Data/Control SQL Server
Sensors : N \\
Local

System Controller

A

SYNAPT G2 | ¥ =

Supported in part by
DTRA and NIH/NIDA | Cornell's robot can control VIIBRE'’s robot microscope! |,,,




VI “RE

So how do we implement the
biology for our Robot
Scilentist?



How have we been studying biology?

e People
We are severely limited in isogenetic
controls, interventions, and data when

studying normal subjects and patients. ( \\\\ =)
e Animals = ~d4

are not people and have significant
genetic and physiological differences.

e Cells in vitro
2D biology on plastic: Many biological

1 2 3 4 5 8 ¥ 8 8 10 M 2
- DD OO0
'éﬂ ®/8/0j0]6 0/0e]
i)

PDI

OODODDODUOO0D
Go/o]o]e /8]0 e/e o/eeTe)

-
®/0js/0/08/0/0/0/0]0

H®

-P100%20Petri%20Dish.jpg

oygiq,ooqqq

U Y S S Y

experiments are conducted on cells that

have cancer,

are inbred,
are diabetic, :
are potatoes on a stiff plastic couch without exercise g
enjoy neither gender nor sex,

live almost entirely in the dark,

gorge themselves on sugar once a day,

may be slowly suffocating in an increasingly acidic
environment,

live in their own excrement,

never bury their dead,

may take a complete or only partial bath every day or two,
and talk only to cells of like mind.

v

384 Well ~40

384 and 1536 images courtesy of
David Weaver

1536 Well ~8 pl

One might get reproducible,
statistically significant results,
but are they relevant to
human biology and disease?

Watson, Hunziker, and Wikswo, Exper. Biol. and Med., 2017 774






VI “RE

Circa 2011, organoids and
organs-on-chips break into
the limelight

« Schmeichel and Bissell "Modeling tissue-
specific signaling and organ function in
three dimensions." J Cell Science (2003)

* https://www.ted.com/speakers/mina_bissell
776



A hot, new in vitro model for biology

Complex 3D biology is a better model
e 3D Organoids

Are self-organizing models with tissue-level
functions and disease phenotypes.

Demonstrate development

Can be transplanted

Can be a medium-to-high throughput assay

Hard to replicate an individual organoid

May benefit from engineered hydrogels

Hard to perfuse or apply uniform shear stress

Hard to quantify barrier functions

Hard to visualize when living

Hard to integrate with other organ systems with
proper volumes

b

Contributions from Kapil Bharti (NIH/NEI)

I Feeding tube

Sample

collection

MCF-10A

Reactor cartridge .
Aseptic

filter

MCF-10A AT1

«i

Input

manifold Output

manifold

MCF-10CA1d

V.Z'/ “RE

iia| Differentiation media +RA|

| Matri rigel droplet | Spinning bioreactor |
Day 11 Day 15

than 2D biology.

|  hES media, low bFGF | Neural induction media |Differentiation med

| Suspens‘.icn |

Day 0

Suspension

Day 6

Ernbryoid Expanded
hP‘:Gs Ne uroectoderm neuroepithe | Cerebral tissue
] !
Spinning droplet Stationary

SOX2 TUM Hoechst

Lancaster, ... , Knoblich. Cerebral organoids model human
brain development and microcephaly. Nature, 2013.

3.0
R T . it
. 5 7 T 35
:E'! 20 1 1 -
T 15 L - -
@
=]
~ 1.0 | ] e
2
- 0.5+ i ——1 — |———|
0.0 T T
0 1 10 100 1000
Docetaxol (ng/mL)
Markov, ... , McCawley. Thick-tissue bioreactor as a

platform for long-term organotypic culture and drug

delivery. Lab Chip 12:4560-4568. 2012. 777



The “Media Volume” problem

Conventional

* A typical picoliter @)
cell requires a
nanoliter of media | |
Relative sphere sizes:
per da.y nL media vs pL cell

cells covered by
a 10,000 pm
layer of media. T

_ Media 102 m
* A5nL spheroid

in 5 L of media /“Q\L
1 or 2days

between fluid | 1000
changes Media

» Metabolites,
endocrine,
autocrine, and
paracrine factors
are diluted 1000-
fold.

10°m

\

Media

Plastic

VI “RE

culture Microfluidic tissue culture

* A typical picoliter cell requires a
nanoliter of media per day.

A 10 um layer of cells is covered by
a 2 ym layer of media.

« A10 pym layer of = — * 5000 fluid changes/day

* Metabolites, autocrine, paracrine,
and endocrine factors are diluted
by only 1.2x

1.2x10°m

778



Another hot new in vitro model for biology e
Complex 3D biology is a better model than 2D blology VI/JRE

° Orqan Ch|pS Mammary gland on a chip

Better than 2D biology

Ideal for barrier functions

Can reproduce physiological flows

Provide a thick ECM for scaffolding
and drug/factor binding

Support organ-organ interactions

Sufficient tissue for multi-omics of

ceIIs ina Iymph node on a ch|p

Shannon Faley, Kevin Seale and John iksw

Lisa McCawl d Dmitry Markov, Vanderbilt
Isa McCawley and Dmitry Markov, vanderbi Vanderbilt

10’s to 1000’s of variables reart on & chip fo TE 4 i el
Can use minimal media volumes f T '
Will be vascularized soon - /
May ultimately reduce drug costs i
Possible to build a single-patient L

-—

- Jacquelyn Brown and John
Wikswo, Vanderbilt

homunculus
Could build animals-on-chips ZES'?L"AE?&&‘;L‘JZ.
Can require microfluidics and control % polypers *
Not yet high throughput
Are expensive today (hardware,
effort, human cells, real estate)
Not fully validated vs in vivo, e.g., no
WGCNA yet Prabhakar Pandian and

Kapil Pant,

Can’t be transplanted SynVivo/CFDRC ~ PH/www.synvivobio.com



Organ-Chips, Organ Chips, Organ Chips...

Side chambers

Interfaces are important, and
endothelia can protect cells.

Epithelium Endothelium

Huh et al., Science, 2010

N

Human-on-a-Chip

T TR MBI SRR I Ch RS TN ST OGN O AT ST 3 lesirg Under license from Harvard

Sung . Ehubes
(BF12251206, 2004

HEST:’EﬁOS Coupled organs support PKPD

Hckman, Exp Bl Med 230

TiSSUSE "

Emulating Human Biology

W g

NORTIS httpsiwwanortisbio.com'

3D Constructs

(Svnvivo > Blanar Constructs

ittpciwwew symivobio.com L

Microvascular nancpartiche delivery assay

hittpifon-bio.comfinstruments!

Under kcense
from MIT

Others, and there’s room to grow!
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John Wikswo’s goal — Determine how _
best to fit two new Homunculi species Hu VI/BRE'
Into the biomedical research ecosystem. / ;

Ventilator

Arterial System
Venous System

PC-puCA System Sense and Control:
Mech, Elec, Chem, Optical

@
|

Cardiopulmonary Assist
- -Gl T - TS T .

Pressure, O,, CO, Sense
and Control

Missing Organ
pFormulator

Homo chippiens |What can organs-on-chips do| Homo minutus

NanoHuman (nHu) for basic research and tox- MicroHuman (uHu)
safety? Single organs and/or

| | coupled-organ homunculi?
JP Wikswo, et al., Lab on Chip, 2013. 781




National Center

for Advancing VI =
Translational Sciences ' D-RE

» Human iPSC-derived SEMEEESEE  Fan) T P
neuronal Ce”S s PR : 1 s Tuberous Sclerosis Alliance

Sciences \m
ent hiPSCs are being used to create brain microvascular endothelial cells, astrocytes,
pericytes, and both excitatory and inhibitory neurons 2016

Tissue Chips at Vanderhbilt M)

AL
IR
I L ITi

Bioreactors

VIIBRE NVU as built 2014 Mammary gland-on-a-chip 2016

Control
hardware

VIIBRE 24-port valve MicroFormulator 1.0, 2015

2015

VIIBRE NVU Perfusion
Controller 2014

Analytical
chemistry &
metabolomics

VIIBRE MicroClincial Analyzer
2014 Core Carbon Metabolism MS metabolomics 2016

I ~ = . o Achareang. | | d U.S. patents: 7,435,578;
T ran S I atl O n .OVX ° é - chac m) Translational Sciences 781223’601’ 7??03?725’
M A 7,713,733; 7,790,443;

V1 ot NORTIS 7,974,003; 7,977,089;
PRO Advanced Ex Viva 3D Cell Culture Technologies Up 7,981’649; 8’129’179; 8,339,704

In-line MS of organ chip 2013

\\\QHII\NQ
A
%,

v AGENG“




The VIIBRE NVU and BBB

Layer 1: Endothelial Cells
Vascular
Perfusion

Channels

Barrier
Membrane

Layer 2: Brain
Compartment

Astrocytes &

Pericytes
Layer 3:
Brain
Perfusion Neurons
Channels
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NVU/BBB measurements VI “RE

» Tightening of the BBB with time - | & ™ g &
after assembly = i i g I N

 Disruption by glutamate in the o | memercaron
brain compartment

» Tightening by ascorbic acid in the = I
vasculature = =

- Differential responses over time to ::
inflammatory agents (LPS and

cytokine cocktails)
 Differential transport across the

oo =
BBB: ascorbic acid (Y), I M
Terfenadine (Y), Fexofenadine (N) "2~

 Response to combined insults
(brain glutamate + acidification)

ssssssssssssssssssssssssssss

exposure  recovery Vascular  Chamber  Vascular
Charnber Chamber

ater acie 784



Cardiac I-Wire VI/igRE

0 Restitution Curve

0 250 500 750 1000 1250 1500 1750 2000 2250

Time (ms)

0 500 1000 1500 2000 2500
Pacing Interval (ms)

Frank-Starling Curve

e
18}
S
)

*

0 —e— Control

i

e
I

=]

0.10 4

0.05 4

Peak Developed Force (mN)

("778 y 7500

oo ° o 0 02 04 06 0.8
@ Tension Force (mN)
F= KoA Siderov, et al., Acta Biomateralia, 2016
p = Kpdsy
As; = As — Asy = As —\JAL(2L + AL)
Asy = (L +4L)2 — 12 = \JAL(2L + AL) . .
- T Cardiac Hill model
AL = JL2+A52 —L=\/L+(AS—K—”) -L
P
Fp = Kp As; = 2Fsin(6) = 2F; =%
-1 4 K
FC = 2 Kp < ’74L(2L+AL) 1) (L + AL) PEn
Kpen KPE,
(KPEam +Kpgn + "K amn )
FC = 1+KPEam = (AL + ALfoS‘—’t)
Ksg - C\ b —_—
o () LK (8t BLoprse)—Fa Kse Ke
AL = = b(l_fZ(AL)_KPEn ) <\ KPfam
KsE
) . . . ) > Schroer, et al., Acta Biomateralia, 2016
Nashville single-string guitar equation 785



R s 0 7 T " .

NIH-NCATS MPS Integration
Arterial System Venous System

) Neurovascular Unit )
N Intestine
a v,
A Bile
N Liver L] N
) Kidney D
) Muscle )

Physiology Sense and Control:
Mech, Elec, Chem, Optical

Pressure, O,, CO,, pH, Osm
Sense and Control

Missing Endocrine
HnFormulator

Muscle

Baylor
College of
Medicine




Work Flow for Functional Coupling Experiment

Goal: Couple Gut, Liver, Brain, and Kidney

700 pl

Dilute Drug Blank
Blank

Blank
Apical Gut
Media

Efflux Media
with Blank
Liver Media

Neurovascular

Basolateral .
Media

Media

Mass Spec
Mass Spec

Vascular
~ Brain

Mass Spec

Mass Spec
Mass Spec
Mass Spec

Liver

Faa e 1 e H
:ﬁ;{/ G, 33% Liver Neurovascular

¢ .{K’V{mf 67% NVU
: W//ﬁ d Media .

10 uM Intestine
Terfenadine

Mass Spec

50 % Liver 4.5 ml
50% Kidney Kidney Module
Media

Basolateral
Intestinal

Mass Spec \\\Q,‘\"%‘,-‘L‘i‘“&\\s
&

Mass Spec

Mass Spec
Apical
Intestinal
Mass Spec

Mass Spec

Mass Spec

Mass Spec
Vascular

M - JHU/Baylor
M - U Pittsburgh
M - U Washington

M - Vanderbilt Vernetti, et al., Scientific Reports, 2017

Mass Spec
Proximal Tubule




Work Flow for

Functional Coupling Experiment

Vitamin D3 Transport and Metabolism

| Vitamin D3/micelles |

| |

Intestine
Uptake & transport

Vitamin D3-DBP

1

Liver
Cytochrome P450 hydroxylation
25 (OH) Vitamin D3

| 25 (OH) Vitamin D3-DBP |

1

Blood Brain Barrier
Penetration of
all forms

Kidney
Cytochrome P450 hydroxylation
1a,25(0H), Vitamin D3
24,25(0H), Vitamin D3

Terfenadine Transport and Metabolism

| Terfenadine |
Intestine
a7 =+ Cyp3A4 metabolism,
o

P-glycoprotein
transport

| Terfenadine, Fexofenadine |

!

Liver
Low Fexofenadine
clearance

Fexofenadine P-gp transport

-
7
|

Fexofenadine |

X

Kidney
Fexofenadine
elimination

Bile recirculation (not measured)

Blood Brain Barrier

No Fexofenadine
penetration

TMA Transport and Metabolism

| TMA (microbiome) |

-

Intestine
TMA microbiome product
Uptake & transport

TMA conversion to
TMAO*

| TMA, TMAO |

Kidney Blood Brain Barrier
TMA, TMAO j I
elimination TMAO penetration unknown

/

TMAO penetration into human CSF confirmed the
NVU observation: Del Rio, et al., Nutrients, 2017

We found 26% TMAO penetration
into the NVU brain chamber!

Clinical
Test Agent/Metabolites MPS Model | Intestine Liver Kidney BBB
e T <5%T _ ) TM A Penetration:
TMA TMAO Clinical | Uptake & Transport | LMA—TMAO <5%TMA | _ 9500 Ta1AO Excreted I'MAQ Penetration
Clearance Lnkaguwy
T - MA — TMAO < 1% TN - - .
MPS Uptake & Transport T.‘ 1A _T 1A 1% TMA ~46% TMAO Excreted 26% TMAO Penetration
Clearance
'[iirfcnadinc (Ter) Fexoferiadine Clinical Ter — Fex; Fex < 1% Bio T <95% Fex 11% Fex Excreted ~0% Fex Penetration
(Fex) CounterTrans Clearance
— Fex; Fex < 1.4% Bio T (est.) < 80% Fex . .
MPS Ter r‘.‘_ Fex = 14 I_:o T (est) Fex ~ 1% Fex Excreted ~ (0% Fex Penetration
CounterTrans Clearance
Vitamin D3 (VD3) 25(OH)VD3; | e | Uptake & Transport | yp e T soHDse | VD3&2S(OH)VDS
10,25(0H),VD3; 24,25(0H),VD3 : No metabolism - ) 2_;“_:,:_‘[_‘3}_‘,'!';1',”\‘ iy Penetration
MPS Uptake & Transport [ VD3 — 25{0H)VD3 & 1, 25(0H), VD3 e~ 0.4% VD3 & 6% 25(0H)
’ No metabolism 24,25(0H),VD3 24,25(0H),VD3 below LOQ VD3 Penetration

Key Concordances Between MPS and
Clinical Fate for Three Test Agents. Key:
Uptake - by jejunum endothelial cells ;
Transport - from apical to basolateral media;
— = Metabolism; CounterTrans = Transport
from basolateral to apical media; est. =
estimated. Excreted - into proximal tubule
lumen; LOQ = limit of quantitation;
Penetration - through blood-brain barrier.

Vernetti, et al., Sci. Reports, 2017




Limb
Development
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Systems Engineering & Analysis

Funded by U.S. Environmental
Protection Agency Grant 83573601
Shane Hutson, P.I.




Problems that are at the MPS cutting edge VI/ERE

How accurately can

e The full metastatic cascade we recreate micro-
. . . jature and th
— Localized formation of the primary tumor |, ->- "1

— Intravasation into vascular and lymph systems
— Dissemination through vascular and lymph systems
— Extravasation into a competent organ

— Colonization and proliferation with seed-soll interactions
How accurately must we

° TeSting immuno-oncology drugs recreate adaptive immunity?

— Requires isogenetic innate and adaptive Immune system,
tumor, and metastatic niche to avoid host-versus-graft
reactions and MHC-HLA incompatibilities.

— May require organ-specific lymph nodes, immune-active
spleen and bone marrow for proper programming of
multiple types of immune cells.

— CD34+ progenitor cells and B cells have yet to be derived
from IPSCs.
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VIIBRE’s Tissue Chips Challenges

* Reduce costs

« Shorten time from patient to iPSC to
mature phenotypes

» Develop genotype libraries

* Learn how to control iPSC differentiation

Human iPSC-derived
neuronal cells

* Reduce volumes zmmres
e Vascularize @
e Eliminate PDMS

» Add electrodes to the NVU

 Reduce volumes
 Reduce size and cost

Control hardware ¢ Recirculate

» Add diurnal hormone <8OO@O©@Q_{%
and nutrient variations \COCO0O000O =

Hormone Storage Wells

Bioreactors

) I —,—// ‘.
+ bl
Hormone
Selector

* Reduce volumes
» Detect more analytes on-line at lower cost
 Infer metabolic and signaling networks

Analytical chemistry &
metabolomics

* Make it cost-effective and easy for conventional biologists,
toxicologists, and pharmacologists to use organs on chips without
a gigantic capital investment or an engineering degree

» Start answering medical questions and solving medical problems

Translation



How good a model do we need? VI :RE
e [t depends upon the guestion you are asking J

The best material model for a
cat Is another, or preferably the

Same C at = Arturo Rosenblueth and Norbert Wiener. The
Role of Models in Science. Philosophy of
Science 12 (4):316-321, 1945.

Make your theories simple enough,
but not too simple.

~Albert Einstein

Make your organs-on-chips
systems simple enough, but not
too simple.

John Wikswo
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Coupled Organ-Chips, Control, and
Multi-Omics may hold the key!
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Monitoring Organ Health/Toxin Response VI/PRE’

 Cellular morphology
— Requires fluorescence microscopy
— Organ-on-chip module should be HCS confocal compatible

» Genetically encoded fluorescent reporters
* TEER
e Bioenergetics

* Protein production
— Albumin
— Bile acids
— Cytokines

— Cyp activity ..
_ LDH release The sensitivity of many

» Transcriptomics assays Is set by the ratio of
« Drug metabolism cell volume to media volume!

e Untargeted metabolomics
 Metabolic activity (glucose, lactate, pH, oxygen)
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Tyrode’s solution perfused through a
normal beating mouse heart
Dynamic metabolomics

e) 200 400 m/z 600 800

[V+H"-H,0T" [C+HT [V+NaT
. x4 1 [LI#HT . -
:[LJ|+H*-H61[*[ . ] i [HEHD [HHHO]

; R HOTATAHOT e

D [T+NaT ! S

%

. [S¥H,OT

100 150

m/z 200

250

VI =RE

Sample from Franz Baudenbacher, slide courtesy of John McLean



NVU/BBB UPLC-IM-MS workflow VI/JBRE'

Y, \/
08
é -‘E time
T 5
X o
Sample preparation < m/z
metabolites extracted using ice cooled — :
methanol:H,O (80:20), Sample Acquisition Data Alignment and
incubated -80°C overnight, LC IM-MS/MS of metabolite extracts Biostatistical Analysis
spun down at 15,000 rpm, 15 min Progenesis QI
dried down in vacuo LPS or Cytokine treated samples

Pathways Analysis p-value
Vitamin E metabolism 8.00E-05
Glutathione Metabolism 1.13E-03 s '
Prostaglandin formation from
arachidonate 6.48E-03
Aspartate and asparagine ‘
metabolism 9.95E-03
Drug metabolism - cytochrome P450 9.97E-03 A
Network and Pathway analysis
Network & Pathway Module Output Mummichog

Metabolomic pathway analysis with high mass-accuracy UPLC-IM-MS is accelerating
the incorporation of untargeted metabolomics into mechanism of action studies.

Brown et al., J. Neuroinflammation, 2016 207




Sheet1

				Brain_LPS												Brain_cytokine

				Pathways		overlap_size		pathway_size		p-value (raw)		p-value				Pathways		overlap_size		pathway_size		p-value (raw)		p-value

				Vitamin E metabolism		6		9		0.00487		8.00E-05				Aspartate and asparagine metabolism		20		22		0.00298		0.00031

				Glutathione Metabolism		3		6		0.12523		0.00113				Tryptophan metabolism		27		33		0.01326		0.00035

				Prostaglandin formation from arachidonate		9		38		0.47051		0.00648				Arginine and Proline Metabolism		12		13		0.01961		0.00048

				Aspartate and asparagine metabolism		6		25		0.48789		0.00995				Urea cycle/amino group metabolism		16		20		0.07976		0.00088

				Drug metabolism - cytochrome P450		4		15		0.43153		0.00997				Tyrosine metabolism		22		29		0.09559		0.00089

				Histidine metabolism		3		11		0.45273		0.01653				Alanine and Aspartate Metabolism		8		9		0.0947		0.00172

				Leukotriene metabolism		7		32		0.58539		0.01745				Valine, leucine and isoleucine degradation		13		17		0.17806		0.00248

				Beta-Alanine metabolism		2		6		0.3964		0.02366				Glycine, serine, alanine and threonine metabolism		12		16		0.22729		0.00392

				Glycine, serine, alanine and threonine metabolism		4		19		0.63607		0.0373				Lysine metabolism		10		13		0.22349		0.00442

				Glutamate metabolism		2		7		0.48103		0.03736				Aminosugars metabolism		8		10		0.21501		0.00512

				Ascorbate (Vitamin C) and Aldarate Metabolism		2		7		0.48103		0.03736				Butanoate metabolism		8		10		0.21501		0.00512

																Biopterin metabolism		8		10		0.21501		0.00512

				Blood_LPS												Purine metabolism		13		18		0.28282		0.00563

				Pathways		overlap_size		pathway_size		p-value (raw)		p-value				CoA Catabolism		4		4		0.15487		0.00826

				Pyrimidine metabolism		9		16		0.05078		0.00525				Vitamin B1 (thiamin) metabolism		4		4		0.15487		0.00826

				Glycerophospholipid metabolism		8		14		0.05878		0.00592				Vitamin B3 (nicotinate and nicotinamide) metabolism		8		11		0.36531		0.01485

				Ascorbate (Vitamin C) and Aldarate Metabolism		5		7		0.04631		0.00673				Drug metabolism - cytochrome P450		8		11		0.36531		0.01485

				Beta-Alanine metabolism		4		6		0.10253		0.0145				Glycerophospholipid metabolism		11		16		0.41584		0.01583

				Glutathione Metabolism		4		6		0.10253		0.0145				Sialic acid metabolism		9		13		0.43345		0.02063

				Aspartate and asparagine metabolism		10		24		0.26221		0.0232				Vitamin B6 (pyridoxine) metabolism		3		3		0.24727		0.02625

				Prostaglandin formation from arachidonate		15		39		0.31216		0.02604				Heparan sulfate degradation		3		3		0.24727		0.02625

				Vitamin B3 (nicotinate and nicotinamide) metabolism		5		11		0.29661		0.04452				Fatty Acid Metabolism		3		3		0.24727		0.02625

				Histidine metabolism		5		11		0.29661		0.04452				C5-Branched dibasic acid metabolism		3		3		0.24727		0.02625

																Omega-6 fatty acid metabolism		5		7		0.48237		0.046

																Fatty acid oxidation, peroxisome		5		7		0.48237		0.046

																Putative anti-Inflammatory metabolites formation from EPA		5		7		0.48237		0.046

																Blood_cytokine

																Pathways		overlap_size		pathway_size		p-value (raw)		p-value

																Tyrosine metabolism		28		32		0.06511		0.004

																Valine, leucine and isoleucine degradation		16		17		0.04818		0.00431

																Lysine metabolism		12		13		0.12459		0.01021

																Glycine, serine, alanine and threonine metabolism		15		17		0.16077		0.01128

																Omega-6 fatty acid metabolism		7		7		0.13242		0.01857

																Tryptophan metabolism		27		34		0.3537		0.02617

																Biopterin metabolism		9		10		0.24257		0.02852

																Vitamin B5 - CoA biosynthesis from pantothenate		6		6		0.17707		0.02999

																Methionine and cysteine metabolism		14		17		0.35148		0.037

																Pyrimidine metabolism		14		17		0.35148		0.037

																Aminosugars metabolism		8		9		0.29931		0.0432
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						Pathways Analysis		p-value

						Vitamin E metabolism		8.00E-05

						Glutathione Metabolism		1.13E-03

						Prostaglandin formation from arachidonate		6.48E-03

						Aspartate and asparagine metabolism		9.95E-03

						Drug metabolism - cytochrome P450		9.97E-03






Rapid Threat Assessment (RTA) of MoA V.Z'/J‘

Richard Caprioli, PI, DARPA W911 NF-14-2-0022.

6, 24 and 48 h. MS proteomics (mudpit, SILAC, phospho-
proteomics), IM-MS metabolomics, RNAseq, etc

2}
Objective: Use multiomics to characterize drug and toxin 2R L e s
Mechanism of Action (MoA) in 30 days or less. OK 3 ‘///m,[lg/@g’
. . . = X @© /
Challenge 1: A549 cells treated with 50 uM cisplatin for 1, 8§35 | @@ @ é@
5% - P g
5 < 4
©=s

D DD J “ear by
® ' o arres|

gnificance

Canonical Species, Detected

®  Canonical Species, Not detected
Expanded Canonical Species, Detected
Expanded Canonical Species, Not detected

» 254,296 total features 0‘%"
» 55,898 unique species 2
» 13,483 (24%) species
— significantly changed

ical s

alual

RECONSTRUCT MECHANISM

and ev:

Expanded Canonical, Pino et al., in preparation

DDN: 40% of network

measured (2,215 species) :

-] 86% of detected species .|
~ = _| changed significantly

B ERN - 2557 nodes .
DDN - 6386 nodes Apoptosis

ECN - 2560 nodes
DDN - 6386 nodes

Expanded Canonical vs Expanded Resistance vs i -
Data Driven Network Data Driven Networks

: : : : New Canonical Cisplatin MoA
Time-resolved omni-omics has great potential! Norris et al., J. Proteome Res. 2017




RTA — Bendamustine MoOA VI/}?RE

Known Mechanism of Action of Bendamustine Vanderbilt-RTA Postulated Mechanism of Action )

Bendamustine

Inhibition of

Checkpoint Control NA Damag
/ PLE-1, Aurora-like-kinase \\ Mitotic Catastrophe . \ t\' Response

Extensive DNA — Inefficient DNA and “non apoptopic

) death pathwa ey ||
damage repair p Yy
\ Ape-1, Rad2, M5HE Amplification
¢ (NRE 11 §
Activation of
“traditional” D
— e

apoptosis Tumor
P53, NOXA, Bt Shrinkage
caspases

Leoni and Hartley, Seminars in Hematology (2011)

Vanderbilt RTA 2nd 30-day Challenge

* Acquire 781,072 data points spanning
12 time points and 7 platforms

* How do we extract and integrate ‘(
knowledge from these data? A

T MAGINE mechanism movie |
Molecular network arranged by GO . poRTTe :
sedby / ol —repigen o, ell Cycle Arre
o - Enrichment of processes (red dot) N N
= Number of molecular interactions — GO network N
O between species (width of edge) neg\:rc‘ cell for selected Jé“"ﬁn b Sp ecies Breakdown
s > processes i =
I/ \ Collapse 75 » Species Total = 32
N NV a8 « Detected = 29 (91%)
: MAGINE simplifies large- [osp 3:;1 fnglq;—;;ft ' 1 « Significantly Measured = 23 (72%)
scale network stimulus” g Apoptosis
. . athwa . . . .
interpretation 305 P *Grey species not significantly changing

Pino, et al., in preparation Farrow, et al., in preparation
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Anatomy
1 Animal
Physiology
Organ
Cell
Cell Biology
Network
Molecule
l Genome

Genomics

uononpay

AN

Construction

24 “RE

Standard
biology and
medicine

Are we using
the wrong
topology as we
describe the
exploration of
biology?

Systems
Biology

JP Wikswo and AP Porter, EBM, 2015



Hermeneutics, houn
[harma n(y)oodiks/}

The study of the methodological principles
of interpretation (as of the Bible).

http://www.merriam-webster.com/dictionary/hermeneutic

The first order art and the second order
theory of understanding and interpretation
of linguistic and non-linguistic expressions.

http://plato.stanford.edu/entries/hermeneutics/



:Ierméneutic Circle, noun
[harma n(y)oodik sark(a)l]

Whole

One cannot understand the
whole until one understands the
parts, and one cannot understand
the parts until one understands
the whole.

Parts

Gadamer,HG. Truth and Method. 2nd ed., Continuum, New York, 2000
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Anatomy
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Physiology

Post-Genomic,
Post-Proteomic 2014
Biology and Tissue
Engineering

Organotypic
Constructs

Control of
Biology

Engineered
Molecules

Structural Biology

il

Genomics Genome



Anatomy

The next five years ]
S y VI /_‘S’RE’

Animal W
Physiology

Organ
Modules

Organotypic
Constructs

Control of
Biology

Engineered
Molecules

Structural Biology

il

Genomics Genome

JP Wikswo. The relevance and potential roles of
microphysiological systems in biology and medicine.
Exp.Biol.Med. 239:1061-1072, 2014.



"NIH NCATS MPS Integration:
Baylor, Johns Hopkins, MGH, Pittsburgh, Vanderbilt, Washington

Arterial System Venous System
} D Neurovascular Unit D
‘ » Gut
\/
y Baylor
Bile ae Collsefge of
. & Medicine
| } Liver }
—

} ) Kidney >

.“.
o e 4B 1

R
g709 Shid

System Sense and Control:
Mech, Elec, Chem, Optical

Cardiopulmonary Assist

t======(0)

P o omomoo

Pressure, O,, CO, Sense
and Control

Missing Organ
uFormulator




The next five years: Disease Models ]
y | VI =RE

E M\
piy,

Anatomy o

Coupled Human ©
Microphysiological
Systems

Tomorrow

Organ

C, LR
g hips will' \* & |
1960 Organs O.nC P Modules
o contribute to
Systems Biology,

Integrative Physiology, Organotypic
and Constructs

Quantitative Systems

Pharmacology, and E_Of;”o' of
. iology
Disease research!
Structural Biology Engineered
Molecules

il

Genomics Genome

JP Wikswo. The relevance and potential roles of
microphysiological systems in biology and medicine.
Exp.Biol.Med. 239:1061-1072, 2014. 7109



Almost time to be In a second cycle... ]
gin asecond cy VI -rE

Anatomy ,
Coupled Human ©
1 Microphysiological
Systems
Physiology
5 Organ
S Modules
4 of Biology:
Cell One cannot understand the _
Cell Biology organism until one understands 2014 Organotypic

Constructs

the parts, and one cannot
understand the parts until one

understands the organism. Control of

Biology

Engineered
Molecules

Structural Biology

il

Genomics Genome



The Hermeneutic Clrcle of Blology VT ?,_)RE

Anatomy '
Coupled Human ©

Microphysiological
Systems

Animal ™

Physiology Tomorrow

Organ
Modules

Constructionist

Biology
Reductionist

Biology

Organotypic
Constructs

Control of
Biology

Engineered
Molecules

Structural Biology

il

Genomics Genome

Molecule

JP Wikswo. The relevance and potential roles of
microphysiological systems in biology and medicine.
Exp.Biol.Med. 239:1061-1072, 2014. 7111
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Experimental Biology
and Medicine <=z

A Journal Dedicated to the Publication of Multidisciplinary
and Interdisciplinary Research in the Biomedical Sciences

ISSN 1535-3702

ebm.sagepub.com
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Almost time to begin cond cycle... ]
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Anatomy | |
‘-?t'- 3 Coupled Human °
| Microphysiological
Animal & Systems

Physiology

Organ
Modules

tracellular an
extracellular multi-
mics may be the ke

to closing the
rmeneutic circle of

Organotypic
Constructs

Control of
Biology

Engineered
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Structural Biology

il

Genomics Genome, Transcriptome, Lipidome, Metabolome, Metabolome, ...




VI =RE

What's next for me?

e Missing organs
* Exploring pharmacokinetics (PK) without
changing the medicinal chemistry

o Controlling IPSC differentiation




The “Missing Organ” Problem VI/L?RE

 The human body has over a hundred organs.
e The Tissue Chips community is building “toy
models” of humans, i.e., Homunculi.
— We cannot include every organ.
— We should not include every organ.

 For a coupled organ system, there may always be
a key organ that has been omitted.

e Missing secretory organs can be replaced with a
Missing Organ Microformulator.

— Hormones, hormones, hormones




R s 0 7 T " .

NIH-NCATS MPS Integration
Arterial System Venous System

) Neurovascular Unit )
N Intestine
a v,
A Bile
N Liver L] N
) Kidney D
) Muscle )

Physiology Sense and Control:
Mech, Elec, Chem, Optical

Pressure, O,, CO,, pH, Osm
Sense and Control

Missing Endocrine
HnFormulator

Muscle

Baylor
College of
Medicine




Missing Organ MicroFormulator (UF) V.Z'/i’:’RE’

Pressure, O,, CO, Sense

and Control « Cliffel GfOUp:
------------------------------- » Testing performance with e-chem
Missing Organ » Reduction of ferricyanide at -0.16V
nFormulator )
vs. Ag quasi-reference.
* Low leakage between ports
e Programming allows rapid switching
between ports for dilution, gradients, and
calibration of electrochemical sensors

Delivery of desired concentration
50 50 mM

Current (pA)

0 360 660 9(I)0 12IDD 15.00 18IOD 21I00 24:00 27I00
Time (s)
Time-division multiplexing
. and oscillating concentrations

Output
Line
3 20
2 A AJiln) —60s
&
= —10s
=}
O 10
—5s United States Patent, 9,618,129 B2
0 A normally closed rotary planar valve for microfluidic
0 50 100 150 200 250 300 applications, F. E. Block I, J.R. McKenzie, P. C. Samson,

Time (s)

D. A. Markov, and J. P. Wikswo, In Preparation.



What can you do with a pF-96? VI -RrE

« Matt Wagoner — AstraZeneca: “Make me 96 of them! Use
time-division multiplexing to create realistic PK drug-
exposure profiles individualized for each and every well in a
96-well-plate HTS assay!”

— Conventional cell culture
— Massively parallel organs on chips
— Organoid HTS arrays
* Hanging drop
o Transwells
6 - Time-Division Multiplexing
Buffer Drug

5 4 — — — — -

Concentration
w

0 50 100 150 200 250
Time




UF-96 v1.0: January 2016 VI -RE

Funded in part by AstraZeneca as a collaborative effort initiated by o
Matt Wagoner, with Jay Mettetal and postdoc Aditya Kolli. Now

involving Kristin Fabre and Clay Scott, and postdocs Sudhir Deosarkar

and Jingwen Zhang.

=1 | RPPM RPPM | [
o 26P 26P a
g RPV RPV g
5 RPPM RPPM .
> >
a o > o > a
x S SE o4
o o
Lo Well T9)
Plate
> a > o > >
g 2% ok &
o o
Ln Lo
> | RPPM | [ 26P 26p || RPPM | [S
o o
o RPV RPV o
a | | RPPM RPPM | | &

Can individually formulate, deliver, and
remove custom media cocktails to

each well of a 96-well plate to simulate
PK profiles.

wal




96-Channel MicroFormulator (uF-96), v2.0

 For each well, formulate a e
custom media/drug mixture = I &
in real time.

Change 10% of the fluid in
each well 40x/day.

—ay-7 ‘——r——___,_____;
A Le LTSS .

T SAYER SRRy
F=Sa SO

Funded in part by AstraZeneca and an NIH/NCATS SBIR to CFD Research Corporation. Licensed to CN Bio Innovatlons 7120



Well Plate Tool

Challenge: Develop a tool for configuring
and tracking fluid delivery (including PK

-
4
c D c / =
v2.0 -
-/
National Center
m) for Advancing
Translational Sciences

exposure profiles) to individual wells in a 96-

well plate or multiple Organs on Chips.

i* Oral Administration

Experiment Mame: IExpNamE TES S CITIE}( D.ED
Solution: |Short Tube Port 1 | Top Off Volume (uL): | 100.00 = 112|134
Waste: |Long Tube Port 1 | Fill Rate (uL/min): ||:|.|:|5 = |A 0 0 O Tmax 2.00
Time Length (in HR): |24 3: Empty Rate (ul/min): IIII.IIIE 3: B . 0 O T {hal-F Eliminaﬁﬂn} E |:||:|
Change Rate (HR): | 1 3: C '
—Wel: B1 0 0 O )

. DIOOO ka (absorption rate) 0,22

' Intravenous Infusion E 0 0 O

¥ Oral Administration F 0 0 O 0 E

Cmax {0.80 = G 0 0 O 0 =

Tmax 2.00 = aYala =

- - | 14 2
T (half elimination) I 2,00 j L
ka (absorption rate) IIZI.22 ﬁ c ,5 T P P P P e
E;’ o 35 7 10.5 14 175 21
E E Time (hr)
00 35 7 DEeETE T
Output Loc.: IC:,."GrEg _| Time (hr)
It is straightforward to
Create Profoco St | __dee | adjust PK profiles in vitro.

Funded primarily by an NCATS SBIR to CFD Research Corp. Developed by Greg Gerken, VIIBRE

7121



2019: CN Bio Innovations’ PharmacoMimixTMV-Z_-/BRE

Being developed by CN Bio under license from Vanderbilt University 12



Diseases and Optimal Drug Dosing are
. . ERE
Circadian V'Zj/

Peptic ulcer / histamine
Allergic rhinitis / H,-receptor antagonists

anti-allergy medications

Nocturnal asthma /

Nocturnal asthma / th hyll
eophylline

B2-agonists

Cancer /
5-Fluorouracil

Leukemia /
methotrexate

Secondary
hypertension /
antihypertensive
drugs

Rheumatoid arthritis,
Addison disease,
dermatology /
glucocorticoids

Primary hypertension /
antihypertensive drugs
Transplantation /
immuno-suppressive drugs
evening dose>morning dose

Adapted from Baraldo MD (2008) The influence of circadian rhythms on the kinetics of
drugs in humans, Expert Opinion on Drug Metabolism & Toxicology, 4:2, 175-192,




Diurnal Variations of Liver-Regulating Hormones VI/BRE’

Pineal Adrenal Pancreas Thyroid A.n t(_erlor
Pituitary

Cortex
Growth
Hormone

s
S

N
o
o

150

Concentration (% Baseline)
H
ol o
o o
[']

o
-
-
-

16 20 24 28
Time (hr)

o
~
[e)
-
N

Cyr, Avaldi, and Wikswo, Experimental Biology and Medicine, 2017 7124



Which endocrine organs / hormones do we need? °
0 VI “rE

Cyr, Avaldi, and Wikswo, Experimental Biology and Medicine, 2017



Diurnal Variations of Organ-Reqgulating Hormones
~ D EE =] ’ ’ J VI/jﬂE

_m‘¢¢(w,¢ =) SIIEIE)
== '“-'-’C'

¥
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Neurovascular Unit
Kidney

Muscle

Adipose

Heart /

A
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Cyr, Avaldi, and Wikswo, Experimental Biology and Medicine, 2017 Time (ho)




Diurnal Variations of Organ-Regulating Hormones VI/;"’RE’

Upstream Endocrine Organs Sensing and Control

[ Pancreas ] pg;:tgzl e Organy p x

A

] N\
MicroFormulator
@ Cortisol .ee Hormone,, N Qrgans
CICIEICICY

:|; N Hormones

J *JF

J@ —

ddddd fh

Hormone Storage Wells Hormone Pump  Organ Selector
Selector |

The MicroFormulator can
bring diurnal rhythms to
biology on plastic.

Cyr, Avaldi, and Wikswo, Experimental Biology and Medicie, 2017




What can you do with a uF-967? VI/;C’RE’

« EXxplore in a massively parallel manner the multitude of
combinations of growth factors and other compounds
that are needed to guide IPSC differentiation to specific

cellular phenotypes.
— Readily applicable to organoid developmental biology

— Suitable for machine learning and automated model inference.

Add and remove growth factors, etc., at will

Waddington 1957




Stem Cell Differentiation: Cell phenotype VI/iC’RE'
rolling down the epigenetic landscape J

36 5. Huang and D.E. Ingber / A Non-Genetic Basis for Cancer Progression and Metasitasis

This Is a
102 to 10°
dimensional
surface

M

i W

Fig. 3. Waddington's epigenetic landscape. Eeproduced from CF. Waddington, 1957 [64]. We postulate here that the metaphoric epigenetic
landscape corresponds to the attractor landscape (Fig. 2) that can be reduced to the dynamics of a gene regulatory network
7129



The epigenetic landscape reflects complex and
dynamic genetic control.

o
———————

— R

..... * IPSCs
S NG Snd e ESCs
_#C75. + SCNT-ESCs
‘-" « Epigenetic
” control

: = :
ROTSEN A 3 G R
T L O YA, G N e A N R

Nonequilibrium thermodynamics allows uphill motion. &
We need to control the sticks!

-

Waddington, 1957



Can the secretome be used to control

IPSC differentiation?

ATLAS
 Automated

* Quantitative guidance
* Non-destructive cell monitoring

« Combinatorics through multi-well plates

Supernatant _, Secreted Factors

~ O

‘

Secretome-Guided

Microformulator

Control of Differentiation <€— I

VI “RE

Proteomics

+
Al  Metabolomics

+
Transcriptomics

+
Characterization

0
Differentiation
State

+

Secretomics

John Wikswo’s 2017 Automated Biology Class: Kylie Balotin, Lauren Boller, Allison Bosworth, Caleb Casolaro,
Natalie Hawken, Kyle Hawkins, Greg Lowen, Michael Raddatz, Joey Simmons, Tyler Taplin, John Vastola

7131



VI “RE

We need a non-destructive
sighal to control IPSC
differentiation!




Proteins in Secretome vs Cytosol VI/L?RE

Protein Secretome Protein Secretome of LPS- Proteins From Cell
of Immature Activated Dendrtitic Cells Lysate
CCAP ' Compl Fact B { |

: "t"‘ Jet ey
- 1" ' . \\ i iy 1 ‘b_l‘ 4
) e L _— | b 1Y, | 2
"ilo-“it. . = S MMP12 - I';": ; ‘_4.":' ‘
e . “'L -‘hkli..'.?h } i .“# .“,‘
& Leal2 f ""b;' S :
.l-‘\ ".{::' ‘.; ¥
Prx1
: ' "
et N '-9
o — "-—":-—l--l.l-—— - R
- L )
.Y "
Protein Secretome Lysate Proteins

LL
<

What is the small-molecule, metabolite secretome? &

Chevallet, et al. Proteomics. 2007. 7133



Cell fates as high-dimensional attractor states
of complex gene regulatory network

Genome-wide gene regulatory networks aovern the behavior of cells (i.e., differentiation, death, etc.).
Gene expression profiling can be used to show that two trajectories of neutrophil differentiation
converge to a common state from different directions.

Data from Huang S, Eichler G, Bar-Yam Y, et al. Cell fates as high-dimensional attractor states of a complex gene regulatory
network. Phys Rev Lett. 2005 Apr 1;94(12):128701.




Cell fates as high-dimensional attractor states
of complex gene regulatory network

Genome-wide gene regulatory networks aovern the behavior of cells (i.e., differentiation, death, etc.).

Gene expression profiling can be used to show that two trajectories of neutrophil differentiation
converge to a common state from different directions.

Metabolic
Trajectory

Stacy Sherrod
and John Wikswo

Principal
Component2

Secretome
metabolomics can
neutrophil distinguish
transitions in
intracellular state

Stacy Sherrod and John Wikswo
with the support of the Millipore
Corporation

Transcriptomic data from Huang S, Eichler G, Bar-Yam Y, et al. Cell fates as high-dimensional
attractor states of a complex gene regulatory network. Phys Rev Lett. 2005 Apr 1;94(12):128701.




Can the secretome be used to control

IPSC differentiation?

Sensin ad Alter procedure in simple ways

Y

Existing

Protocol

Differentiation || Experiment

Y

< MOdel i N Mechanistic prediction testing
CO ntrOI Model-driven optimization

<

[ Secretomics

+Intracellular-omics

Close the Loop
Begin Phase 1 for next cell type

Untaréeted MS Targeted-MS

Y

Identify Correlations Build a Network

New
Control
Approaches

Blackbox Model

Intracellular-omics

Targeted / QC

John Wikswo’s 2017 Automated Biology Class: Kylie Balotin, Lauren Boller, Allison Bosworth, Caleb Casolaro,
Natalie Hawken, Kyle Hawkins, Greg Lowen, Michael Raddatz, Joey Simmons, Tyler Taplin, John Vastola

VI “RE

7136



Controlling Cellular Differentiation VI/ERE

iPSC

Primitive
Ectoderm,
Endothelial

.,q

”
Angioblast L - @
Lymphoid
Stem Cell N -
Hematopoietic Posterior -
po Hemangioblast Primitive
Stem Cell
Streak
Neural Neural
Platelet - - Mid Anterio Stem Cell Progenitor
I MYEIOI?I Primitive Primitive
- ' Glial
\ ;f Progenitor
\ i
\

1
I
1
1
1 !

7 I \ ’ Paraxial
7 1 Mesoderm

1
1
1

!
s \\ Lateral "'
Mesoderm 7
‘ |

i
Cardiac I
Mesoderm ’ Fibroblast
Limb Bud / Dermo Sclerotome
1mb Bu u Myotome
Mesoderm 1 ¥
Cardiomyocytes Cartilage
Definitive
Greg Lowen Endoderm [}orsal ne
g Brown Fat

De rmis

Where is Vanderbilt's tactical advantage for MicroFormulator
and multi-omic control of cellular differentiation?
 Neurons?
* Gl epithelium?

John Wikswo’s 2017 Automated Biology Class: Kylie Balotin, Lauren Boller, Allison Bosworth, Caleb Casolaro,
Natalie Hawken, Kyle Hawkins, Greg Lowen, Michael Raddatz, Joey Simmons, Tyler Taplin, John Vastola 7137




What else might we need?

Advances In
mathematics

Genetically coded
fluorescent
reporters

Optogenetics

Addressing cellular

heterogeneity
— Single-cell FISH

— CRISPR-CAS with
Single-cell RNAseq

— Single-cell mass
spectrometry

®- Base medium
& Amino acids (~15)

@& Cytokines (N>>1)

® Growth factors(N>>1)
® Hormones (N>>1)

& [Na], [Ca], [K]. [Mg].
@ [glucose](t)
@ [lactate](t)

by |

Oxygen Sensor
Cell Loading Channel f

{

@ [PO4. Glucose Sensor f,
@ [PHI(t) MO Sensor \
@ [0:1(1)

T : SEI’ISOI
\, Ref

Electrode

Genetic
Mechanical Lactate Sensor

Optical
M\
Thermal / \ \.‘
Electrical NO Sansor \\
C0, Sensor
Perfugion Channel Opical Fibers
\ | Ca,QD1.QD32

Pneumatic Control

0, parmeabla

Membrane
POMS

Top Layer
Fluidic Layer SNENA RN
Cover Slip

\\ T~ Oxygen Sensar

* SU-8 Photoresist

pH Sensor

LeDuc, Messner, Wikswo, Annual Reviews of BME, 2011,

Se
Contr

\ Outflow
/& IM-M

Supernatant

Vi

Morphology
Size, shape, optical density, motility, division,
organelle configuration
Force
Shear, tension, deformation
Intracellular Signaling (Optical)
GFP/luciferase reporters, [Cal,, pH,, Vi,
MMP, GFP FRET
Extracellular Electrolytes (Electrochemical)
[Nal,, [Cale, [Kle, [Mg]e, [POe, [Cl]s, [HCO:],
Neurotransmitters (Electrochemical)
Seratonin, acetocholine, GABA, ...
Extracellular Metabolites (Electrochemical)
[glucose](t), [lactate]{t), [pH](t), [O:](t), NO(),
HaOu(t) ...

Extracellular Metabolites (GC IM-MS)
Amino acids, small metabolites, stable
isotopic markers
Surface Expression

Specific affinity probes
Soluble Gene Expression (nESI IM-MS)
Cytokines, growth factors
hormones, enzymes
Cytosolic Proteins (MALDI IM-MS)
Lipids (Cell Lysate IM-MS)
Gene expression (NRNA Arrays)

Protefmics
Metabolomics
Transcrﬁ)tomics
+
Characterization
Differe?".tfation
State

+*

Secretomics

cret? -Guided
ol of Differentiation ¢—

] L

Microformulator

-
7138
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Almost done!

7141



2012: Driving forces for the future of biologyVI/igRE

 The need for more realistic in vitro experiments

— Massively parallel, cellular microenvironments for the study of cell-cell, cell-
cell-drug, and cell-cell-drug-snp interactions

— Real-time control of biological systems (Organs on Chlps)

 The need to control multiple parameters at the same time and
measure multiple dynamic variables

( MicroFormulator )
— Cell-scale sensors and actuators

— Experiments that involve thousands of parameters

 The need to create complex, nonlinear models
(Graph Databases)

— New mathematics

— Symbolic regression and exploration-estimation algorithms for machine
learning in automated microbioreactors

— Models to enable control of cellular responses and biomolecule production
 The need to raise research funds from more diverse sources

 The inability of the human mind (or at least those of the reviewers) to
understand the complexity of what is being proposed and/or

discovered .
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JPW 2012: The bottom line... VI =RE

 Ultimately, biology
experiments may
resemble particle
physics experiments.

* Physicists have the
requisite training and
mindset compatible with
large scale, automated
biology, but are often
bioignorant.

o Computational
geometry and topology
may be the new
mathematics for biology.

e Should we teach
Physics 101 and

Topology 101 before | |
Biology 1017 JPW January 2016: “Oh, shit. I've done it.”
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There is yet one more potential problem... VI/ERE

 We may not be able to understand what the
computer tells us about biology.

 The next challenge is to create computers that can
explain their findings to us....

It might be as hopeless as explaining Shakespeare
to a dog.

Hod Lipson, 2009
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JPW 2012: All May Not Be Lost VI -rE

TeachYourDog ~ See Spot Read: Willow the Dog
toRead (C0)

understands written commands

{ “....the dog can now
sit up when a card
says ‘Sit Up,’ plays
dead when a card
reads ‘Bang,’ and
wave a paw when a
sign says ‘Wave.’”

http:/lwww.peoplepets.com
/news/amazing/see-spot-
read-willow-the-dog-
understands-written-
commands/1




Really Hard Problems V.Z;/}’BRE

However...

We do not have to fully
understand a phenomenon
to control or eliminate it. An
effective model can
accomplish a lot.

John Wikswo
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VI “RE

Organs on Chips are highly controlled,
Interconnected In vitro human organ
preparations that support intensive
data acquisition and control not
possible iIn humans.

Use them accordingly.
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VIIBRE Organ-on-a-Chip Collaborators VI/’/jﬁ’RE'

Vanderbilt -Wllllam Matloff AstrazZeneca J
* Vanessa Allwardt  «Lisa McCawley « Matthew Wagoner, Jay Mettetal, Kristin Fabre,
* Frank Block Il « Jennifer McKenzie Aditya Kolli, Sudhir Deosarkar
* Frank Block Jr. « BethAnn McLaughlin cFp Research Corporation
e Aaron Bowman « John McLean - Kapil Pant, Prabhakar Pandian
» Clayton Britt « Dusty Miller « Andrzej Przekwas
« Jacquelyn Brown < Karoly Mirnics Charite Hospital, Berlin (2012-2014)
* Young Chun * Nicole MuszynskKi « Katrin Zeilinger, Marc Lubberstadt, Fanny
« David Cliffel * Diana Neely Kndspel
e Erica Curtis e Kevin Niswender Cleveland Clinic and Flocel Inc.
« John Scott Daniels e« Virginia Pensabene . Michgel D(_eblock, Kyle Lopin, and Chaitali Ghosh
- Jeffrey Davidson «Ronald Reiserer * Damir Janigro (Flocel)

Harvard/Wyss (2011-2015)

:'I?\/Ir(])r;laaDE?/Velfheart . BZU:S 22?;?; * Don _Ingber, Kit Parker, Josh Goss, Geraldine
- . : Hamilton, Danny Levner

» William Fissell * Kevin Seale Johns Hopkins University

* Greg Gerken. . St_acy_ Sherrpd « Mark Donowitz

* Lucas Hofmeister < Mingjian Shi Los Alamos National Laboratory (2012-2014)

« William Hofmeister Matthew Shotwell « Rashi lyer

» Orlando Hoilett e Veniamin Sidorov University of Pittsburgh

 Chaz Hong * Hak-Joon Sung « Lans Taylor, Albert Gough, Lawrence Vernetti

» Shane Hutson « David Tabb University of Texas Medical Branch

* Deyu Li « Adam Travis * Mary Estes

e Chee Lim e Donna Webb University of Washington

e Ethan Lippmann e« Hendrik Weitkamp * Jonathan Himmelfarb

« Dmitry Markov e Erik Werner University of Wisconsin

e John Wikswo  William Murphy, William Daly

Bold = heavy lifting Blue =PI Funded by DTRA, DARPA, NIH/NCATS, EPA, AstraZeneca, VIIBRE, SyBBURE-Searle 715



“Look for the
missing keys @
between the
street lamps.”

John Wikswo, 2006
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