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Abstract
Deconvolving the multiscale, spatiotemporal complexity of biology 
requires not only understanding the governing laws of physics and 
chemistry, but also decoding billions of years of genetically encoded 
history. Simple, passive observations cannot expose the nested, 
redundant levels of regulation in the historical instruction set, and 
active interventions are needed to disable specific biological functions 
to expose others. The concept of the hermeneutic circle applies to 
biology – one cannot understand the whole until one understands the 
parts, and one cannot understand the parts without understanding the 
whole. In this context, coupled microphysiological systems meet the 
criteria for a successful toy model: complicated enough to recapitulate 
key regulatory processes but simple enough to understand. Revealing 
the functions of such coupled in vitro systems will require untargeted 
analysis of the genome, transcriptome, proteome, lipidome, 
interactome, and metabolome at the level of cells and tissues, which 
places demands on the accessibility and interconnection of each 
micro-organ and establishes lower limits on their sizes. The grand 
challenge is to devise and integrate the requisite cells, microfluidic 
bioreactors, sensors, analytical techniques, closed-loop controls, and 
mathematical models (which may be underspecified). Machine learning 
and automated design of experiments may be critical to closing the 
hermeneutic circle.



The central question for today

What can we do to accelerate 
our understanding of the 
complexities of biological 
systems?

74



Julia Wikswo

Seven Themes
1. A brief history of biology
2. Just how complex is biology?
3. What is the role of physics in 

understanding the complexity of 
biology?

4. Why do we need to emphasize 
external control?

5. How might Organoids and Organs 
on Chips change the way we study 
biology?

6. What does Multi-Omics offer?
7. Closing the circle
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Martin HN. The direct influence of gradual variations of temperature 
upon the rate of beat of the dog's heart. Philos Trans R Soc London 
1883 Jan 1;174:663-88.

1883

O. Langendorff. Untersuchungen am Überlebenden 
Säugethierherzen. Pflug.Arch.Eur.J.Phy. 61 (6):291-332, 1895, 
as shown in H.G. Zimmer. The isolated perfused heart and its 
pioneers. News Physiol.Sci. 13:203-210, 1998.

Conclusion: Body temperature affects 
heart rate. Missing from the image: Dog 
with cannulated heart & lungs, cast 
iron, water-filled pan, and Bunsen 
burners…

1895
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Avis FR. Investigations of liver and kidney. Design of a 
dual apparatus for research study. Science Teacher 
1961;28(1):14-8.
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• Neely JR, Liebermeister H, Battersby EJ, Morgan HE. Effect 
of pressure development on oxygen consumption by isolated 
rat heart. Am J Physiol 1967 Apr 1;212(4):804-14.

• Neely JR, Liebermeister H, Morgan HE. Effect of pressure 
development on membrane transport of glucose in isolated 
rat heart. Am J Physiol 1967;212(4):815-22.

1967
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In regular use by academics and pharma

Today

Holzer JR, Fong LE, Sidorov VY, Wikswo JP and 
Baudenbacher FJ. High resolution magnetic images 
of planar wave fronts reveal bidomain properties of 
cardiac tissue. Biophys.J. 87 (6):4326-4332, 2004.
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Cells

• Novick A and Szilard L. Experiments with the Chemostat on Spontaneous Mutations of Bacteria. PNAS 36 (12):708-719, 1950.
• Aaron. Novick and Leo Szilard. Description of the Chemostat. Science 112 (2920):715-716, 1950.

1950’sCell
Cell Biology

http://www.lacksfamily.net/images/image359.jpg

Henrietta Lacks
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glasslaboratory.com/files/2245127/uploaded/GL-P100%20Petri%20Dish.jpg

tpp.ch/page/bilder/Produkte/TC_flasks_standard/flasks_all2.jpg
4ti.co.uk/files/cache/e7199a9f456dacab058c6be0b54e9235.jpg

Today
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http://www.iubmb-nicholson.org/chart.html

Crucible of Science: 
The Story of the Cori 
Laboratory, John H. 
Exton, Oxford, 2013
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to 
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http://www.insight.mrc.ac.uk/2013/04
/25/behind-the-picture-photo-51/

1952

Rosalind E. Franklin. Structure of Tobacco 
Mosaic Virus. Nature 175 (4452):379-381, 1955.

1955
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throughput 
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Images courtesy of 
Dr. David Weaver, Vanderbilt VICB High-Throughput Screening Facility
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The Human 
Genome 
Sequenced

http://www.wired.com/2008/07/british-institu/

http://nsaunders.wordpress.com/2011/12/22/sequencing-
for-relics-from-the-sanger-era-part-1-getting-the-raw-data/

2003
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The $1,000 
Genome

1000 Gb max output, 4000M max read number, 2x125bp max 
read length, 600 gigabases (Gb) per day per system
http://systems.illumina.com/systems/hiseq_2500_1500.ilmn

Today



Conclusion: Technology 
drives major advances 
in biology!
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Does this 
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problem?

Systems 
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Why is biology so complex?
• The human genome codes for 

~20,000 unique proteins
• RNA splicing and proteolysis may 

result in 50,000 to 500,000 
unique proteins.

• Post-translational modifications 
may increase this to a million …. 

• An individual cell expresses 
between 10,000 to 15,000 
different proteins at any one time.

• Proteins interact with each other.
Human proteome, and its binding 
interactions - Simonis and Vidal.

Transcription Regulation - Tony Weil

G-coupled protein receptors – Heidi Hamm



Why is biology so complex, con’t?
• Today, one can easily detect 100,000 

chemical species in 100 μL of rat serum.
• Cells are NOT well-stirred bioreactors but 

have anomalous diffusion and active 
transport.

• 109 - 1011 interacting cells in some organs.
• We must consider the microbiome.
• Cell signaling is dynamic, non-linear, 

multiscale, redundant, and has positive   
and negative feedback.

• Metabolism may have 5000 reactions.
• Models might need Avagadro’s number of 

PDEs, i.e., a Leibnitz of PDEs (1 L = Na). 
• We need new experimental approaches.

UPLC-nESI-IM-MS John McLean

3.1 x 3.2 x 1.2 µm3 beta cell 
Brad Marsh, PNAS, 2001
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chemical species in 100 μL of rat serum.
• Cells are NOT well-stirred bioreactors but 

have anomalous diffusion and active 
transport.

• 109 - 1011 interacting cells in some organs.
• We must consider the microbiome.
• Cell signaling is dynamic, non-linear, 

multiscale, redundant, and has positive   
and negative feedback.

• Metabolism has 8,000 reactions.
• Models might need Avogadro's number of 

PDEs, i.e., a Leibniz of PDEs (1 L = Na). 
• We need new experimental approaches.

UPLC-nESI-IM-MS John McLean
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Biology spans lots of space and time

But it is more 
complicated than 
that…
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Part of the 
problem is that 
human biology 
is COMPLEX.

Organs talk to each 
other, but we seldom 
hear what they are 

saying.
Wikswo, TEDx Nashville, 2013 Julia Wikswo
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Heart
Blood

Blood vessels
Digestive

Salivary glands
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Organs, Organs, Organs

Wikswo, TEDx Nashville, 2013 Julia Wikswo



.
Intestines
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Rectum
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Endocrine

Hypothalamus
Pituitary gland

Pineal gland
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Spleen
Appendix

Integumentary
Skin
Hair
Nails

Muscular
Muscles

Golgi tendon organ
Nervous

Brain
Spinal cord

Nerves
Eyes

.
Penis

Respiratory
Pharynx
larynx

Trachea
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Lungs

Diaphragm
Skeletal
Bones

Cartilage
Ligaments
Tendons

Wikswo, TEDx Nashville, 2013 Julia Wikswo
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Complexity from multiscale interactions
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• Homeostasis is an orbit 
around an attractor in 104-106

dimensional phase space.
• Aging and disease are 

extended trajectories in that 
space.
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A possible failure mode

Ontological failure:  The phenomenon you are 
interested in requires elements or laws 
outside of the set you have been given.

D. Bray. Reductionism for biochemists: how to survive the protein jungle. Trends 
Biochem.Sci. 22 (9):325-326, 1997.



731

The solution to ontological failure

Get more data…
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It’s the numbers…. 

Where do we get a mole of numbers?
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The Catch
• Modeling of a single mammalian cell may require 

>100,000 dynamic variables and equations, maybe > 
1,000,000

• Cell-cell interactions are critical to system function
• 109 - 1011 interacting cells in some organs
• Cell signaling involves highly DYNAMIC biochemical 

cascades with positive and negative feedback
• Multiple, overlapping regulatory mechanisms
• Many of the interactions are nonlinear
• Models might have a Leibnitz (1 L = Na) of PDEs 
• The data don’t yet exist to drive the models
• Hence we need to experiment…
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Helmholtz on Cells

“The behavior of living cells should be accountable in 
terms of motions of molecules acting under certain 
fixed force laws.” 

Herman von Helmholtz, 1870
Quoted in Max Delbruck, “A Physicist looks at biology”
Trans. Conn. Acad. Arts Sci. 38:173-190, 1949.



Bohr on Complementarity

“… we should doubtless kill an animal if we tried to 
carry the investigation of its organs so far that we 
could describe the role played by single atoms in vital 
functions.  In every experiment on living organisms, 
there must remain an uncertainty as regards the 
physical conditions to which they are subjected, and 
the idea suggests itself that the minimal freedom we 
must allow the organism in this respect is just large 
enough to permit it, so to say, to hide its ultimate 
secrets from us.”

N. Bohr. “Light and Life,” 
Nature 131 (3309):457-459, 1933.
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Schrödinger on Life

“Present day physics and chemistry could not possibly 
account for what happens in space and time within a 
living organism.”

“… a living organism … can only keep … alive … by 
continually drawing from its environment negative 
entropy.”

Schrödinger, What is Life, 1943



Perutz on Schrödinger

“When I was invited to review the influence of What is 
Life? I accepted with the intention of doing honor to 
Schrödinger’s memory. To my disappointment, a 
close study of his book and of the related literature 
has shown me that what was true in his book was not 
original, and most of what was original was known not 
to be true even when it was written.”

M. F. Perutz. Physics and the riddle of life.
Nature 326 (6113):555-558, 1987.
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Perutz on Schrödinger

“When I was invited to review the influence of What is 
Life? I accepted with the intention of doing honor to 
Schrödinger’s memory. To my disappointment, a 
close study of his book and of the related literature 
has shown me that what was true in his book was not 
original, and most of what was original was known not 
to be true even when it was written.”

M. F. Perutz. Physics and the riddle of life.
Nature 326 (6113):555-558, 1987.

What was original was from Max Delbruck.
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What makes biology so 
different from physics, 
chemistry, and engineering?



What makes biology different from 
physics or chemistry?
Physics and chemistry describe dynamic interactions 
in terms of fundamental or phenomenological laws that 
govern the state of the matter being studied.

Biology has laws, but the operation of every living 
organism is determined not only by the laws of biology, 
physics and chemistry, but also by historic instructions 
that may be specific to each individual organism.
“. . . any living cell carries with it the experiences of a 
billion years of experimentation by its ancestors. You 
cannot expect to explain so wise an old bird in a few 
simple words.”

Max Delbrück, “A Physicist Looks at Biology,” 1949
748

*Ohm’s law, Hooke’s law, the Standard Model, … conservation of mass, Dalton’s law, quantum mechanics …



749

Build untargeted 
mass spectrometers, 
and you will have 
enough data.

How do you deal with 
a Leibnitz of 
non-sparse PDEs 
involving 
100,000 nonlinear 
variables? 
Carefully, very carefully
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There is a second possible failure mode

Ontological failure:  The phenomenon you are 
interested in requires elements or laws 
outside of the set you have been given.

Epistemological failure: You have enough 
elements and the laws do apply, but you 
yourself cannot understand the explanation 
that they provide.

D. Bray. Reductionism for biochemists: how to survive the protein jungle. Trends 
Biochem.Sci. 22 (9):325-326, 1997.

A possible failure mode
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Houston, we have a problem.
• The human brain can process only seven pieces of 

data at a time.

“…the seven-point rating scale, the seven 
categories for absolute judgment, the seven 
objects in the span of attention, and the seven 
digits in the span of immediate memory...”

G.A. Miller, “The Magical Number Seven, Plus or Minus Two: Some Limits on our 
Capacity for Processing Information,” Psychological Review, 63, 81-97 (1956).
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If the human brain were so simple
that we could understand it,
we would be so simple 
that we couldn't.

Emerson M. Pugh, 1938

A Really Hard Problem
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Pugh’s observation applies to biology:

Human biology may be 
too complicated for 
humans to fully
comprehend.

John Wikswo

Yet one more Really Hard Problem
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VIIBRE 2001 
Instrumenting and Controlling Cells

© Vanderbilt University 2007



Machine Learning: A robot that can 
infer a model of “itself”

My hypothesis: Machine 
learning and model 
inference with automated 
experimentation can be 
extended from robots to 
bioreactors.

56

J. Bongard, V. Zykov, and H. Lipson, Resilient 
Machines Through Continuous Self-Modeling, 

Science, 314, 1118-1121, 2006 

A robot can be programmed 
to conduct experiments to 
derive a model of itself.



Note to self: 2006

• Can I design and build a 
hybrid silicon/biological 
system that proposes 
and generates models 
and conducts 
experiments on itself to 
identify the underlying 
equations that govern 
cellular dynamics?

• Extracellular: $3 - 4 
million and 3 - 5 years 

• Intracellular: $15 - 20 
million and 5 – 10 years
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First step – control biology!



INPUT ACTUATORS
• Chemical
• Electrical
• Genetic

• Mechanical
• Optical
• Thermal

• Scaffolding

OUTPUT SENSORS
• Apoptosis

• Differentiation
• Gene / Protein Expression

• Growth 
• Metabolism 

• Motility
• Signal Transduction

C(s) G(s)

C(s) G(s)Inputs Outputs

From: LeDuc, Messner,  Wikswo. How do controls approaches 
enter into biology? Annual Reviews of BME, 2011.

C(s) = Controller  G(s) = System Dynamics 

Yang et al., PLoS1, 2011
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Actuator

Integration
and Feedback

Integration
and Feedback

Integration
and Feedback

SensorCell

Model-driven control of biological systems

Wikswo et al., IEE Proc Nanobiotechnol. 153: 81-101 (2006)

• Multiple, fast                                                 
sensors

• Openers (Mutations,
siRNA, drugs) for the 
internal feedback 
loops

• Intra- and                                       
extracellular                                       
actuators
for controlled
perturbations

• Algorithms that create 
feedback loops to 
automatically probe 
the system and report 
the feedback signal.



Artificial Intelligence, per Wikipedia

• Narrow AI (or "weak AI“) is the use of software to 
study or accomplish specific problem solving or 
reasoning tasks. Weak AI, in contrast to strong AI, 
does not attempt to simulate the full range of human 
cognitive abilities. (Siri, Alexa…)

• Strong AI is artificial intelligence that matches or 
exceeds human intelligence — the intelligence of a 
machine that can successfully perform any intellectual 
task that a human being can. … Strong AI is 
associated with traits such as consciousness, 
sentience, sapience and self-awareness observed in 
living beings. (Turing test…)



Narrow versus Strong Automated Biology

• Narrow AB: the use of software to study or 
accomplish specific laboratory biology tasks
– High throughput screening (HTS)
– Automated microscopy (ImageJ)
– Biomedical data mining (KEGG, MAGINE, SIMONE)
– Computer-aided medical diagnosis

• Strong AB: automated biological experiments driven 
by autonomous, machine-learning systems
– Identification of orphan gene function (King et al.)
– Inference of metabolic networks (Schmidt et al.)
– Optimal design of experiments
– Development of iPSC differentiation control paradigms



Strong AB: King’s Robot Scientist “Adam”

RD King et al. The Automation of Science. Science 324 (5923):85-89, 2009.

•6,657,024 optical density measurements@595nm to form 26,495 growth curves
•Formulated and tested 20 hypotheses concerning genes encoding 13 orphan enzymes



Strong AB: King’s Robot Scientist “Eve”

764
Williams, et al., “Cheaper faster drug development validated by the repositioning 
of drugs against neglected tropical diseases,” Royal Society Interface, 2015 

Chimeric yeast can inform drug 
mechanism of action in mammalian cells.



What do we need for automated 
inference of biological models?
• Closed-loop control of biology
• Automated design of experiments

– Cells
– Matrix chemistry and architecture
– Metabolic and signaling molecules and other clues

• Quantitative measurements
– Fluorescent imaging
– Electrochemical measurements of bioenergetics
– Untargeted ion mobility-mass spectrometry
– New types of data from new sensing modalities

• Automated data mining and interpretation
• Organotypic 3D tissue culture, including dynamic 

control of the extracellular matrix
765



Narrow versus Strong Automated Biology

• Narrow AB: the use of software to study or 
accomplish specific laboratory biology tasks
– High throughput screening (HTS)
– Automated microscopy
– Biomedical data mining
– Computer-aided medical diagnosis

• Strong AB: automated biological experiments driven 
by autonomous, machine-learning systems
– Identification of orphan gene function (King et al.)
– Inference of metabolic networks (Schmidt et al.)
– Optimal design of experiments
– Development of iPSC differentiation control paradigms



Grand Challenge: 2006

• Can we design and build 
a hybrid silicon/biological 
system that proposes 
and generates models 
and conducts 
experiments on itself to 
identify the underlying 
equations that govern 
cellular dynamics?

• Extracellular: $3 - 4 
million and 3 - 5 years 

• Intracellular: $15 - 20 
million and 5 – 10 years



Outflow
& IM-MS

CONTROLSACTUATORS
(Inputs)

SENSORS
(Outputs)

Morphology
Size, shape, optical density, motility, division, 

organelle configuration
Force

Shear, tension, deformation
Intracellular Signaling (Optical)

GFP/luciferase reporters, [Ca]I, pHi, Vm, 
MMP, GFP FRET

Extracellular Electrolytes (Electrochemical)
[Na]e, [Ca]e, [K]e, [Mg]e, [PO4]e, [Cl]e, [HCO3]e

Neurotransmitters (Electrochemical)
Seratonin, acetocholine, GABA, …

Extracellular Metabolites (Electrochemical) 
[glucose](t), [lactate](t), [pH](t), [O2](t), NO(t), 

H2O2(t) …
Extracellular Metabolites (GC IM-MS)

Amino acids, small metabolites, stable 
isotopic markers

Surface Expression
Specific affinity probes

Soluble Gene Expression (nESI IM-MS)
Cytokines, growth factors

hormones, enzymes
Cytosolic Proteins (MALDI IM-MS)

Lipids (Cell Lysate IM-MS)
Gene expression (mRNA Arrays)

. . .  

Base medium
Amino acids (~15)
Cytokines (N>>1)
Growth factors(N>>1)
Hormones (N>>1)
[Na]e [Ca]e [K]e [Mg]e 
[glucose](t)
[lactate](t)
[PO4]e
[pH] (t)
[O2](t)

Optical
Genetic
Thermal
Electrical
Mechanical

Inflow SYSTEM

MODEL

LeDuc, Messner,  Wikswo, Annual Reviews of BME, 2011.
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Symbolic-Regression and Estimation-Exploration Algorithms 
can design experiments to select best symbolic model 

Sym
bolic 

R
egression

Estimation / 
Exploration
Estimation / 
Exploration

LeDuc, Messner,  Wikswo, Annual Reviews of BME, 2011.
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Inferring Metabolic Models 
using the SRA andEEA

Target Model placed in 
black box with 10% 

noise

Model inferred without any a 
priori information

3 11
4

3

3 12
24

3

3
2 2 2 3 3 3
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3 3 3 4 2 4 5
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98.792 53
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5
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5
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771Model adapted from P. Ruoff et al. Biophysical Chemistry 106 (2003) 179-192

Schmidt, Vallabhajosyula, Jenkins, Hood, Soni, Wikswo, and Lipson. Automated probing 
and inference of analytical models for metabolic networks. Phys.Biol. 8 (5):055011, 2011.
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Media 
Component 
Reservoirs

2014: VIIBRE’s Robot Scientist 
for  Automated Omni-Omics

Electrochemical 
Metabolite 
Sensors

Local 
System Controller

Bidirectional 
Data/Control SQL Server

Inferred Model

Supported in part by 
DTRA and NIH/NIDA Cornell’s robot can control VIIBRE’s robot microscope!
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So how do we implement the 
biology for our Robot 
Scientist?



How have we been studying biology?

• Cells in vitro
2D biology on plastic: Many biological 
experiments are conducted on cells that

• have cancer,
• are inbred,
• are diabetic,
• are potatoes on a stiff plastic couch without exercise,
• enjoy neither gender nor sex,
• live almost entirely in the dark,
• gorge themselves on sugar once a day,
• may be slowly suffocating in an increasingly acidic 

environment,
• live in their own excrement,
• never bury their dead,
• may take a complete or only partial bath every day or two,
• and talk only to cells of like mind.

One might get reproducible, 
statistically significant results, 
but are they relevant to 
human biology and disease?
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glasslaboratory.com/files/2245127/uploaded/GL-P100%20Petri%20Dish.jpg

tpp.ch/page/bilder/Produkte/TC_flasks_standard/flasks_all2.jpg

4ti.co.uk/files/cache/e7199a9f456dacab058c6be0b54e9235.jpg

1536 Well ~8 µl

5”

3 
3/

8”

384 Well ~40 µl

384 and 1536 images courtesy of 
David Weaver

• Animals

• People

Animals, including non-human primates, 
are not people and have significant 
genetic and physiological differences.

We are severely limited in isogenetic
controls, interventions, and data when 
studying normal subjects and patients.

Watson, Hunziker, and Wikswo, Exper. Biol. and Med., 2017



Julia Wikswo

Seven Themes
1. A brief history of biology
2. Just how complex is biology?
3. What is the role of physics in 

understanding the complexity of 
biology?

4. Can sensors, actuators, controllers 
and robot scientists help address 
biological complexity

6. What does Multi-Omics offer?
7. Closing the circle
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Circa 2011, organoids and 
organs-on-chips break into 
the limelight

• Schmeichel and Bissell "Modeling tissue-
specific signaling and organ function in 
three dimensions." J  Cell Science (2003)

• https://www.ted.com/speakers/mina_bissell



A hot, new in vitro model for biology

• 3D Organoids
Are self-organizing models with tissue-level 

functions and disease phenotypes.
Demonstrate development
Can be transplanted
Can be a medium-to-high throughput assay
Hard to replicate an individual organoid
May benefit from engineered hydrogels
Hard to perfuse or apply uniform shear stress
Hard to quantify barrier functions
Hard to visualize when living
Hard to integrate with other organ systems with 

proper volumes
Contributions from Kapil Bharti (NIH/NEI) 
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Lancaster, … , Knoblich. Cerebral organoids model human 
brain development and microcephaly. Nature, 2013.

Markov, … , McCawley. Thick-tissue bioreactor as a 
platform for long-term organotypic culture and drug 
delivery. Lab Chip 12:4560-4568. 2012. 

Complex 3D biology is a better model than 2D biology.
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The “Media Volume” problem
Conventional 
culture
• A typical picoliter 

cell requires a 
nanoliter of media 
per day.

• A 10 μm layer of 
cells covered by 
a 10,000 μm 
layer of media.

• A 5 nL spheroid 
in 5 µL of media

• 1 or 2 days 
between fluid 
changes

• Metabolites, 
endocrine, 
autocrine, and 
paracrine factors 
are diluted 1000-
fold.

Microfluidic tissue culture
• A typical picoliter cell requires a 

nanoliter of media per day.
• A 10 μm layer of cells is covered by 

a 2 μm layer of media.
• 5000 fluid changes/day
• Metabolites, autocrine, paracrine, 

and endocrine factors are diluted 
by only 1.2x

1.2×10-5 m
10-5 mCells

Media

Plastic

Glass

10-2 mMedia

Plastic

10-5 mCells

Media 1000 ×

Relative sphere sizes: 
nL media vs pL cell

5 µL

5 nL



Another hot new in vitro model for biology

• Organ Chips
Better than 2D biology
Ideal for barrier functions
Can reproduce physiological flows
Provide a thick ECM for scaffolding 

and drug/factor binding
Support organ-organ interactions
Sufficient tissue for multi-omics of 

10’s to 1000’s of variables
Can use minimal media volumes
Will be vascularized soon
May ultimately reduce drug costs
Possible to build a single-patient 

homunculus
Could build animals-on-chips
Can require microfluidics and control
Not yet high throughput
Are expensive today (hardware, 

effort, human cells, real estate)
Not fully validated vs in vivo, e.g., no 

WGCNA yet
Can’t be transplanted 779

T cells in a lymph node on a chip

Shannon Faley, Kevin Seale and John Wikswo, 
Vanderbilt

Mammary gland on a chip

Lisa McCawley and Dmitry Markov, Vanderbilt

Brain on a chip

Jacquelyn Brown and John 
Wikswo, Vanderbilt

Heart on a chip

Veniamin Sidorov 
and John Wikswo, 
Vanderbilt

Prabhakar Pandian and 
Kapil Pant, 
SynVivo/CFDRC

http://www.synvivobio.com

Complex 3D biology is a better model than 2D biology.



Organ-Chips, Organ Chips, Organ Chips…
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Others, and there’s room to grow!



John Wikswo’s goal – Determine how 
best to fit two new Homunculi species 
into the biomedical research ecosystem.

Homo minutus
MicroHuman (µHu)

Homo chippiens
NanoHuman (nHu)

JP Wikswo, et al., Lab on Chip, 2013.

mHu
μHu

nHu

Hu

What can organs-on-chips do 
for basic research and tox-
safety? Single organs and/or 
coupled-organ homunculi?
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Tissue Chips at Vanderbilt

• Bioreactors

• Human iPSC-derived 
neuronal cells

• Control 
hardware

• Translation

• Analytical 
chemistry & 
metabolomics

Issued U.S. patents: 7,435,578; 
7,534,601; 7,704,745; 
7,713,733; 7,790,443; 
7,974,003; 7,977,089; 
7,981,649; 8,129,179; 8,339,704

hiPSC glutamatergic neurons TSC-patient hiPSCs are being used to create brain microvascular endothelial cells, astrocytes, 
pericytes, and both excitatory and inhibitory neurons 2016

VIIBRE NVU concept 2012 VIIBRE NVU as built 2014 Mammary gland-on-a-chip 2016

VIIBRE NVU Perfusion 
Controller 2014

VIIBRE 24-port valve 
2015

VIIBRE MicroClincial Analyzer 
2014 Core Carbon MetabolismIn-line MS of organ chip 2013 MS metabolomics 2016

MicroFormulator 1.0, 2015 MicroFormulator 2.0, 2016 SmartMotor 2.0, 2016



Layer 1: 
Vascular 
Perfusion 
Channels

Layer 3: 
Brain 

Perfusion 
Channels

Barrier 
Membrane

Layer 2: Brain 
Compartment 

The VIIBRE NVU and BBB

783

Endothelial Cells

Astrocytes & 
Pericytes

Neurons



NVU/BBB measurements
• Tightening of the BBB with time 

after assembly
• Disruption by glutamate in the 

brain compartment
• Tightening by ascorbic acid in the 

vasculature
• Differential responses over time to 

inflammatory agents (LPS and 
cytokine cocktails)

• Differential transport across the 
BBB: ascorbic acid (Y), 
Terfenadine (Y), Fexofenadine (N)

• Response to combined insults 
(brain glutamate + acidification)

784
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Cardiac I-Wire

Siderov, et al., Acta Biomateralia, 2016

Schroer, et al., Acta Biomateralia, 2016

Cardiac Hill model

Frank-Starling Curve
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Restitution Curve

Nashville single-string guitar equation



NIH-NCATS MPS Integration

Pressure, O2, CO2, pH, Osm
Sense and Control

Physiology Sense and Control:
Mech, Elec, Chem, Optical

Venous SystemArterial System

Muscle

Missing Endocrine 
µFormulator

Bile

Neurovascular Unit

N
VU

Li
ve

r
In

te
st

in
e

M
E-

μF
Ki

dn
ey

Intestine

Liver

Vanderbilt

Washington

Pittsburgh

Hopkins, Baylor

Kidney

M
us

cl
e

Duke

Cardiopulmonary Assist



- JHU/Baylor 
- U Pittsburgh
- U Washington
- Vanderbilt

Work Flow for Functional Coupling Experiment
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Vernetti, et al., Scientific Reports, 2017

Goal: Couple Gut, Liver, Brain, and Kidney



Work Flow for Functional Coupling Experiment

Key Concordances Between MPS and 
Clinical Fate for Three Test Agents. Key: 
Uptake - by jejunum endothelial cells ; 
Transport - from apical to basolateral media; 
→ = Metabolism; CounterTrans = Transport 
from basolateral to apical media; est. = 
estimated. Excreted - into proximal tubule 
lumen; LOQ = limit of quantitation; 
Penetration - through blood-brain barrier.

Vernetti, et al., Sci. Reports, 2017

TMAO penetration into human CSF confirmed the 
NVU observation: Del Rio, et al., Nutrients, 2017

We found 26% TMAO penetration 
into the NVU  brain chamber!



Funded by U.S. Environmental 
Protection Agency Grant 83573601 

Shane Hutson, P.I.



Problems that are at the MPS cutting edge

• The full metastatic cascade
– Localized formation of the primary tumor
– Intravasation into vascular and lymph systems
– Dissemination through vascular and lymph systems
– Extravasation into a competent organ
– Colonization and proliferation with seed-soil interactions

• Testing immuno-oncology drugs
– Requires isogenetic innate and adaptive immune system, 

tumor, and metastatic niche to avoid host-versus-graft 
reactions and MHC-HLA incompatibilities.

– May require organ-specific lymph nodes, immune-active 
spleen and bone marrow for proper programming of 
multiple types of immune cells.

– CD34+ progenitor cells and B cells have yet to be derived 
from iPSCs.
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How accurately can 
we recreate micro-
vasculature and the  
basement membrane?

How accurately must we 
recreate adaptive immunity?



VIIBRE’s Tissue Chips Challenges

• Bioreactors

• Human iPSC-derived 
neuronal cells

• Control hardware

• Translation

• Analytical chemistry & 
metabolomics

• Reduce costs
• Shorten time from patient to iPSC to 

mature phenotypes
• Develop genotype libraries
• Learn how to control iPSC differentiation

• Reduce volumes
• Vascularize
• Eliminate PDMS
• Add electrodes to the NVU

Waddington 1957 

• Make it cost-effective and easy for conventional biologists, 
toxicologists, and pharmacologists to use organs on chips without 
a gigantic capital investment or an engineering degree

• Start answering medical questions and solving medical problems

• Reduce volumes 
• Detect more analytes on-line at lower cost
• Infer metabolic and signaling networks

• Reduce volumes
• Reduce size and cost
• Recirculate
• Add diurnal hormone 

and nutrient variations



How good a model do we need?
• It depends upon the question you are asking

792

The best material model for a 
cat is another, or preferably the 
same cat. Arturo Rosenblueth and Norbert Wiener. The 

Role of Models in Science. Philosophy of 
Science 12 (4):316-321, 1945.

Make your theories simple enough, 
but not too simple.

~Albert Einstein

Make your organs-on-chips 
systems simple enough, but not 
too simple.

John Wikswo



Julia Wikswo

Seven Themes
1. A brief history of biology
2. Just how complex is biology?
3. What is the role of physics in 

understanding the complexity of 
biology?

4. Can sensors, actuators, controllers 
and robot scientists help address 
biological complexity?

5. How might Organoids and Organs on 
Chips change the way we study 
biology?

7. Closing the circle
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Coupled Organ-Chips, Control, and 
Multi-Omics may hold the key!
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Monitoring Organ Health/Toxin Response
• Cellular morphology

– Requires fluorescence microscopy
– Organ-on-chip module should be HCS confocal compatible

• Genetically encoded fluorescent reporters
• TEER
• Bioenergetics
• Protein production

– Albumin
– Bile acids
– Cytokines
– Cyp activity
– LDH release

• Transcriptomics
• Drug metabolism
• Untargeted metabolomics
• Metabolic activity (glucose, lactate, pH, oxygen)

The sensitivity of many 
assays is set by the ratio of 
cell volume to media volume!

795



Tyrode’s solution perfused through a 
normal beating mouse heart
Dynamic metabolomics

Sample from Franz Baudenbacher, slide courtesy of John McLean



Data Alignment and       
Biostatistical Analysis

Progenesis QI

time

Sample Acquisition
LC IM-MS/MS of metabolite extracts

LPS or Cytokine treated samples

m/z

R
el

at
iv

e 
Ab

un
da

nc
e

LC

IM-
MS/MS

time

Network and Pathway analysis 
Mummichog

Sample preparation 
metabolites extracted using ice cooled 

methanol:H2O (80:20), 
incubated -80⁰C overnight,

spun down at 15,000 rpm, 15 min 
dried down in vacuo

NVU

Network & Pathway  Module Output  

Pathways Analysis p-value
Vitamin E metabol i sm 8.00E-05

Glutathione Metabol i sm 1.13E-03
Prostaglandin formation from 

arachidonate 6.48E-03
Aspartate and asparagine 

metabol i sm 9.95E-03

Drug metabol i sm - cytochrome P450 9.97E-03

NVU/BBB UPLC-IM-MS workflow

Brown et al., J. Neuroinflammation, 2016 797

Metabolomic pathway analysis with high mass-accuracy UPLC-IM-MS is accelerating 
the incorporation of untargeted metabolomics into mechanism of action studies. 


Sheet1

				Brain_LPS												Brain_cytokine

				Pathways		overlap_size		pathway_size		p-value (raw)		p-value				Pathways		overlap_size		pathway_size		p-value (raw)		p-value

				Vitamin E metabolism		6		9		0.00487		8.00E-05				Aspartate and asparagine metabolism		20		22		0.00298		0.00031

				Glutathione Metabolism		3		6		0.12523		0.00113				Tryptophan metabolism		27		33		0.01326		0.00035

				Prostaglandin formation from arachidonate		9		38		0.47051		0.00648				Arginine and Proline Metabolism		12		13		0.01961		0.00048

				Aspartate and asparagine metabolism		6		25		0.48789		0.00995				Urea cycle/amino group metabolism		16		20		0.07976		0.00088

				Drug metabolism - cytochrome P450		4		15		0.43153		0.00997				Tyrosine metabolism		22		29		0.09559		0.00089

				Histidine metabolism		3		11		0.45273		0.01653				Alanine and Aspartate Metabolism		8		9		0.0947		0.00172

				Leukotriene metabolism		7		32		0.58539		0.01745				Valine, leucine and isoleucine degradation		13		17		0.17806		0.00248

				Beta-Alanine metabolism		2		6		0.3964		0.02366				Glycine, serine, alanine and threonine metabolism		12		16		0.22729		0.00392

				Glycine, serine, alanine and threonine metabolism		4		19		0.63607		0.0373				Lysine metabolism		10		13		0.22349		0.00442

				Glutamate metabolism		2		7		0.48103		0.03736				Aminosugars metabolism		8		10		0.21501		0.00512

				Ascorbate (Vitamin C) and Aldarate Metabolism		2		7		0.48103		0.03736				Butanoate metabolism		8		10		0.21501		0.00512

																Biopterin metabolism		8		10		0.21501		0.00512

				Blood_LPS												Purine metabolism		13		18		0.28282		0.00563

				Pathways		overlap_size		pathway_size		p-value (raw)		p-value				CoA Catabolism		4		4		0.15487		0.00826

				Pyrimidine metabolism		9		16		0.05078		0.00525				Vitamin B1 (thiamin) metabolism		4		4		0.15487		0.00826

				Glycerophospholipid metabolism		8		14		0.05878		0.00592				Vitamin B3 (nicotinate and nicotinamide) metabolism		8		11		0.36531		0.01485

				Ascorbate (Vitamin C) and Aldarate Metabolism		5		7		0.04631		0.00673				Drug metabolism - cytochrome P450		8		11		0.36531		0.01485

				Beta-Alanine metabolism		4		6		0.10253		0.0145				Glycerophospholipid metabolism		11		16		0.41584		0.01583

				Glutathione Metabolism		4		6		0.10253		0.0145				Sialic acid metabolism		9		13		0.43345		0.02063

				Aspartate and asparagine metabolism		10		24		0.26221		0.0232				Vitamin B6 (pyridoxine) metabolism		3		3		0.24727		0.02625

				Prostaglandin formation from arachidonate		15		39		0.31216		0.02604				Heparan sulfate degradation		3		3		0.24727		0.02625

				Vitamin B3 (nicotinate and nicotinamide) metabolism		5		11		0.29661		0.04452				Fatty Acid Metabolism		3		3		0.24727		0.02625

				Histidine metabolism		5		11		0.29661		0.04452				C5-Branched dibasic acid metabolism		3		3		0.24727		0.02625

																Omega-6 fatty acid metabolism		5		7		0.48237		0.046

																Fatty acid oxidation, peroxisome		5		7		0.48237		0.046

																Putative anti-Inflammatory metabolites formation from EPA		5		7		0.48237		0.046

																Blood_cytokine

																Pathways		overlap_size		pathway_size		p-value (raw)		p-value

																Tyrosine metabolism		28		32		0.06511		0.004

																Valine, leucine and isoleucine degradation		16		17		0.04818		0.00431

																Lysine metabolism		12		13		0.12459		0.01021

																Glycine, serine, alanine and threonine metabolism		15		17		0.16077		0.01128

																Omega-6 fatty acid metabolism		7		7		0.13242		0.01857

																Tryptophan metabolism		27		34		0.3537		0.02617

																Biopterin metabolism		9		10		0.24257		0.02852

																Vitamin B5 - CoA biosynthesis from pantothenate		6		6		0.17707		0.02999

																Methionine and cysteine metabolism		14		17		0.35148		0.037

																Pyrimidine metabolism		14		17		0.35148		0.037

																Aminosugars metabolism		8		9		0.29931		0.0432
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						Pathways Analysis		p-value

						Vitamin E metabolism		8.00E-05

						Glutathione Metabolism		1.13E-03

						Prostaglandin formation from arachidonate		6.48E-03

						Aspartate and asparagine metabolism		9.95E-03

						Drug metabolism - cytochrome P450		9.97E-03







Expanded Resistance  vs 
Data Driven Networks

Expanded Canonical vs 
Data Driven Network

DDN: 40% of network 
measured (2,215 species)
86% of detected species 
changed significantly

Rapid Threat Assessment (RTA) of MoA

Expanded Canonical, Pino et al., in preparation

New Canonical Cisplatin MoA
Norris et al., J. Proteome Res. 2017

30-day workflow

• 254,296 total features
• 55,898 unique species
• 13,483 (24%) species 

significantly changed

Richard Caprioli, PI, DARPA W911 NF-14-2-0022. 
Objective: Use multiomics to characterize drug and toxin 
Mechanism of Action (MoA) in 30 days or less.
Challenge 1: A549 cells treated with 50 µM cisplatin for 1, 
6, 24 and 48 h. MS proteomics (mudpit, SILAC, phospho-
proteomics), IM-MS metabolomics, RNAseq, etc. 

Time-resolved omni-omics has great potential!
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RTA – Bendamustine MoA

Species Breakdown
• Species Total = 32
• Detected = 29 (91%)
• Significantly Measured = 23 (72%)

*Grey species not significantly changing

CHK 1

CHK 2

14-3-3

H2AX

DNA Damage 
Response

Cell Cycle Arrest

Apoptosis

Necrosis

ROS
RAD 50

MRE 11

53BP 1
MDC 1

P

P

CYCS

APAF 1

BAD

BID

CASP 8

PARP

CASP 3/7

CASP 9

BAX

P

P

P

PATR

ATM

NBS 1
P

p53✕

BAK✕ CDK 1/2

CDC25 WEE 1

Cyclin B

14-3-3

Aurora A

PLK 1

P

P

P
p21

TPX

✕

DISCDISC

14-3-3

Leoni and Hartley, Seminars in Hematology (2011)

Pino, et al., in preparation

Vanderbilt RTA 2nd 30-day Challenge
• Acquire 781,072 data points spanning 

12 time points and 7 platforms
• How do we extract and integrate 

knowledge from these data?

Known Mechanism of Action of Bendamustine Vanderbilt-RTA Postulated Mechanism of Action

Farrow, et al., in preparation 799



Julia Wikswo

Seven Themes
1. A brief history of biology
2. Just how complex is biology?
3. What is the role of physics in 

understanding the complexity of 
biology?

4. Can sensors, actuators, controllers 
and robot scientists help address 
biological complexity?

5. How might Organoids and Organs on 
Chips change the way we study 
biology?

6. What does Multi-Omics offer?



Animal

Organ

Cell

Network

Genome

Molecule

Physiology

Cell Biology

Molecular Biology

Structural Biology

Anatomy

Genomics

R
eduction
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n

JP Wikswo and AP Porter, EBM, 2015

Are we using 
the wrong 
topology as we 
describe the 
exploration of 
biology?

Systems 
Biology

Standard 
biology and 

medicine



Hermeneutics, noun

[hərməˈn(y)oo͞diks/]

The study of the methodological principles 
of interpretation (as of the Bible).

http://www.merriam-webster.com/dictionary/hermeneutic

The first order art and the second order 
theory of understanding and interpretation 
of linguistic and non-linguistic expressions.

http://plato.stanford.edu/entries/hermeneutics/

Julia Wikswo



Hermeneutic Circle, noun

[hərməˈn(y)oo͞dik ˈsərk(ə)l]

Whole

Parts

One cannot understand the 
whole until one understands the 

parts, and one cannot understand 
the parts until one understands 

the whole.

Gadamer,HG. Truth and Method. 2nd ed., Continuum,  New York,  2000 
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1960s

2014

Today:
Post-Genomic, 
Post-Proteomic 

Biology and Tissue 
Engineering



Physiology

Cell Biology

Molecular Biology

Structural Biology

Anatomy

Control of 
Biology

Engineered 
Molecules

Organotypic 
Constructs

Organ 
Modules

Animal

Organ

Cell

Network

Genome

Molecule

Genomics

What can Organs on Chips 
contribute to 

Systems Biology, 
Integrative Physiology,

and 
Quantitative Systems 

Pharmacology?

1960s

2014

The next five years

JP Wikswo. The relevance and potential roles of 
microphysiological systems in biology and medicine. 
Exp.Biol.Med. 239:1061-1072, 2014.



NIH NCATS MPS Integration:
Baylor, Johns Hopkins, MGH, Pittsburgh, Vanderbilt, Washington

Pressure, O2, CO2 Sense 
and Control

System Sense and Control:
Mech, Elec, Chem, Optical

Venous SystemArterial System

Kidney

Missing Organ 
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Physiology

Cell Biology

Molecular Biology

Structural Biology

Anatomy
Coupled Human 
Microphysiological 
Systems

Control of 
Biology

Engineered 
Molecules

Organotypic 
Constructs

Organ 
Modules

Animal

Organ

Cell

Network

Genome

Molecule

Genomics

1960s

2014

The next five years: Disease Models

Tomorrow

JP Wikswo. The relevance and potential roles of 
microphysiological systems in biology and medicine. 
Exp.Biol.Med. 239:1061-1072, 2014.

Organs on Chips will 
contribute to 

Systems Biology, 
Integrative Physiology,

and 
Quantitative Systems 
Pharmacology, and 
Disease research!

7109



Physiology
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Molecular Biology

Structural Biology

Anatomy
Coupled Human 
Microphysiological 
Systems

Control of 
Biology

Engineered 
Molecules

Organotypic 
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Organ 
Modules

Animal

Organ

Cell

Network

Genome

Molecule

Genomics

The Hermeneutic Circle
of Biology: 

One cannot understand the 
organism until one understands 

the parts, and one cannot 
understand the parts until one 

understands the organism.

1960s

2014

Almost time to begin a second cycle…



Physiology

Cell Biology

Molecular Biology

Structural Biology

Anatomy
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Systems
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Molecules
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Modules
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Genome

Molecule
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1960s

2014

The Hermeneutic Circle of Biology

Tomorrow

JP Wikswo. The relevance and potential roles of 
microphysiological systems in biology and medicine. 
Exp.Biol.Med. 239:1061-1072, 2014.

Reductionist
Biology

Constructionist
Biology
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Molecular Biology

Structural Biology
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Control of 
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Organotypic 
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Organ 
Modules

Animal
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Cell

Network

Genome

Molecule

Genomics

Almost time to begin a second cycle…

1960s

2014

Intracellular and 
extracellular multi-

omics may be the key 
to closing the 

hermeneutic circle of 
biology

Genome, Transcriptome, Lipidome, Metabolome, Metabolome, …



What’s next for me?

• Missing organs
• Exploring pharmacokinetics (PK) without 

changing the medicinal chemistry
• Controlling iPSC differentiation

7114
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The “Missing Organ” Problem

• The human body has over a hundred organs.
• The Tissue Chips community is building “toy 

models” of humans, i.e., Homunculi.
– We cannot include every organ.
– We should not include every organ.

• For a coupled organ system, there may always be  
a key organ that has been omitted.

• Missing secretory organs can be replaced with a 
Missing Organ Microformulator.
– Hormones, hormones, hormones

7115
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NIH-NCATS MPS Integration

Pressure, O2, CO2, pH, Osm
Sense and Control

Physiology Sense and Control:
Mech, Elec, Chem, Optical

Venous SystemArterial System

Muscle

Missing Endocrine 
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Missing Organ  MicroFormulator (µF)

Delivery of desired concentration

0 mM 0 mM
1 mM1 mM

5 mM 5 mM

25 mM25 mM

50 mM

• Cliffel Group: 
• Testing performance with e-chem
• Reduction of ferricyanide at -0.16V 

vs. Ag quasi-reference.
• Low leakage between ports
• Programming allows rapid switching 

between ports for dilution, gradients, and 
calibration of electrochemical sensors

A normally closed rotary planar valve for microfluidic 
applications, F. E. Block III, J.R. McKenzie, P. C. Samson, 
D. A. Markov, and J. P. Wikswo, In Preparation.

Output 
Line

Input 
Valve Pump

United States Patent, 9,618,129 B2 

Time-division multiplexing 
and oscillating concentrations
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What can you do with a µF-96?
• Matt Wagoner – AstraZeneca: “Make me 96 of them! Use 

time-division multiplexing to create realistic PK drug-
exposure profiles individualized for each and every well in a 
96-well-plate HTS assay!”
– Conventional cell culture
– Massively parallel organs on chips
– Organoid HTS arrays

• Hanging drop
• Transwells

• sively parallel manner the multitude of combinations of 
growth factors and other compounds that are needed guide 
iPSC differentiation to specific cellular phenotypes.
– Readily applicable to organoid developmental biology
– Suitable for machine learning and automated model inference

• Create circadian rhythms on a well plate or Petri dish
– Hormones
– Nutrients
– Drugs
– Substances of abuse

7118

Time-Division Multiplexing
Buffer Drug

7118
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µF-96 v1.0: January 2016

7119

Funded in part by AstraZeneca as a collaborative effort initiated by 
Matt Wagoner, with Jay Mettetal and postdoc Aditya Kolli. Now 
involving Kristin Fabre and Clay Scott, and postdocs Sudhir Deosarkar
and Jingwen Zhang. 

Can individually formulate, deliver, and 
remove custom media cocktails to 
each well of a 96-well plate to simulate 
PK profiles. TA

F



96-Channel MicroFormulator (µF-96), v2.0

7120Funded in part by AstraZeneca and an NIH/NCATS SBIR to CFD Research Corporation. Licensed to CN Bio Innovations

• For each well, formulate a 
custom media/drug mixture 
in real time.

• Change 10% of the fluid in 
each well 40x/day.

TA
F



Well Plate Tool
Challenge: Develop a tool for configuring 
and tracking fluid delivery (including PK 
exposure profiles) to individual wells in a 96-
well plate or multiple Organs on Chips.

Funded primarily by an NCATS SBIR to CFD Research Corp. Developed by Greg Gerken, VIIBRE 7121

It is straightforward to 
adjust PK profiles in vitro.
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2019: CN Bio Innovations’ PharmacoMimix™

122Being developed by CN Bio under license from Vanderbilt University
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F



Transplantation / 
immuno-suppressive drugs

evening dose>morning dose

Secondary 
hypertension /

antihypertensive 
drugs

Peptic ulcer / histamine 
H2-receptor antagonists

Leukemia /
methotrexate

Nocturnal asthma /
theophylline

Cancer /
5-Fluorouracil

Rheumatoid arthritis, 
Addison disease, 
dermatology / 
glucocorticoids

Primary hypertension /
antihypertensive drugs

1800

2400

1200

0600

Nocturnal asthma /
Β2-agonists 

Allergic rhinitis /
anti-allergy medications

24 Hour 
Clock

Adapted from Baraldo MD (2008) The influence of circadian rhythms on the kinetics of 
drugs in humans, Expert Opinion on Drug Metabolism & Toxicology, 4:2, 175-192,

Diseases and Optimal Drug Dosing are 
Circadian

7123
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Diurnal Variations of Liver-Regulating Hormones

7124

Melatonin
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T3 &
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Thyroid
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Adrenal 
Cortex

Growth 
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Cyr, Avaldi, and Wikswo, Experimental Biology and Medicine, 2017
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Which endocrine organs / hormones do we need?

7125Cyr, Avaldi, and Wikswo, Experimental Biology and Medicine, 2017
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Diurnal Variations of Organ-Regulating Hormones

7126

• Neurovascular Unit
• Kidney
• Muscle
• Adipose
• Heart / 

Cardiovascular

Cyr, Avaldi, and Wikswo, Experimental Biology and Medicine, 2017
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Diurnal Variations of Organ-Regulating Hormones

7127Cyr, Avaldi, and Wikswo, Experimental Biology and Medicine, 2017

The MicroFormulator can 
bring diurnal rhythms to 
biology on plastic.
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What can you do with a µF-96?
• Use time-division multiplexing to create realistic PK 

drug-exposure profiles individualized for each and every 
well in a 96-well-plate HTS assay.
– Conventional cell culture
– Massively parallel organs on chips
– Organoid HTS arrays

• Explore in a massively parallel manner the multitude of 
combinations of growth factors and other compounds 
that are needed to guide iPSC differentiation to specific 
cellular phenotypes.
– Readily applicable to organoid developmental biology
– Suitable for machine learning and automated model inference.

• Create circadian rhythms on a well plate or Petri dish
– Hormones
– Nutrients
– Drugs
– Substances of abuse

Waddington 1957 

Add and remove growth factors, etc., at will

TA
F
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Stem Cell Differentiation: Cell phenotype
rolling down the epigenetic landscape

P1

iPSC

P2 This is a 
102 to 105

dimensional 
surface
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The epigenetic landscape reflects complex and 
dynamic genetic control.

Nonequilibrium thermodynamics allows uphill motion. 
We need to control the sticks! Waddington, 1957 

• iPSCs
• ESCs
• SCNT-ESCs
• Epigenetic 

control
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Can the secretome be used to control 
iPSC differentiation?
ATLAS
• Automated
• Quantitative guidance
• Non-destructive cell monitoring
• Combinatorics through multi-well plates

7131
John Wikswo’s 2017 Automated Biology Class: Kylie Balotin, Lauren Boller, Allison Bosworth, Caleb Casolaro, 
Natalie Hawken, Kyle Hawkins, Greg Lowen, Michael Raddatz, Joey Simmons, Tyler Taplin, John Vastola
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We need a non-destructive 
signal to control iPSC 

differentiation!

7132
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Proteins in Secretome vs Cytosol

7133Chevallet, et al. Proteomics. 2007.

Proteins From Cell 
Lysate

Protein Secretome 
of Immature 

Dendrtitic Cells 

Protein Secretome of LPS-
Activated Dendrtitic Cells 

What is the small-molecule, metabolite secretome?

Protein Secretome Lysate Proteins
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Cell fates as high-dimensional attractor states 
of complex gene regulatory network

Genome-wide gene regulatory networks govern the behavior of cells (i.e., differentiation, death, etc.). 
Gene expression profiling can be used to show that two trajectories of neutrophil differentiation 
converge to a common state from different directions. 

Data from Huang S, Eichler G, Bar-Yam Y, et al. Cell fates as high-dimensional attractor states of a complex gene regulatory 
network. Phys Rev Lett. 2005 Apr 1;94(12):128701.
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Cell fates as high-dimensional attractor states 
of complex gene regulatory network

Genome-wide gene regulatory networks govern the behavior of cells (i.e., differentiation, death, etc.). 
Gene expression profiling can be used to show that two trajectories of neutrophil differentiation 
converge to a common state from different directions. 

Transcriptomic data from Huang S, Eichler G, Bar-Yam Y, et al. Cell fates as high-dimensional 
attractor states of a complex gene regulatory network. Phys Rev Lett. 2005 Apr 1;94(12):128701.
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Stacy Sherrod 
and John Wikswo

Sui Huang

Stacy Sherrod and John Wikswo 
with the support of the Millipore 
Corporation

Secretome 
metabolomics can 
distinguish 
transitions in 
intracellular state
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Can the secretome be used to control 
iPSC differentiation?

7136
John Wikswo’s 2017 Automated Biology Class: Kylie Balotin, Lauren Boller, Allison Bosworth, Caleb Casolaro, 
Natalie Hawken, Kyle Hawkins, Greg Lowen, Michael Raddatz, Joey Simmons, Tyler Taplin, John Vastola
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Controlling Cellular Differentiation

7137
John Wikswo’s 2017 Automated Biology Class: Kylie Balotin, Lauren Boller, Allison Bosworth, Caleb Casolaro, 
Natalie Hawken, Kyle Hawkins, Greg Lowen, Michael Raddatz, Joey Simmons, Tyler Taplin, John Vastola

Where is Vanderbilt’s tactical advantage for MicroFormulator 
and multi-omic control of cellular differentiation?

• Neurons?
• GI epithelium? TA

F



What else might we need?
• Advances in 

mathematics
• Genetically coded 

fluorescent 
reporters

• Optogenetics
• Addressing cellular 

heterogeneity
– Single-cell FISH
– CRISPR-CAS with 

Single-cell RNAseq
– Single-cell mass 

spectrometry
– … 7138
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Almost done!

7141
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2012: Driving forces for the future of biology 
• The need for more realistic in vitro experiments

– Massively parallel, cellular microenvironments for the study of cell-cell, cell-
cell-drug, and cell-cell-drug-snp interactions

– Real-time control of biological systems
• The need to control multiple parameters at the same time and 

measure multiple dynamic variables
– Cell-scale sensors and actuators
– Experiments that involve thousands of parameters

• The need to create complex, nonlinear models
– New mathematics
– Symbolic regression and exploration-estimation algorithms for machine 

learning in automated microbioreactors
– Models to enable control of cellular responses and biomolecule production

• The need to raise research funds from more diverse sources
• The inability of the human mind (or at least those of the reviewers) to 

understand the complexity of what is being proposed and/or 
discovered

Organs on Chips

MicroFormulator

Graph Databases
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MPS platforms and Multi-Omics  will allow 
multiscale control of complex systems
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JPW 2012: The bottom line…
• Ultimately, biology 

experiments may 
resemble particle 
physics experiments.

• Physicists have the 
requisite training and 
mindset compatible with 
large scale, automated 
biology, but are often 
bioignorant.

• Computational 
geometry and topology 
may be the new 
mathematics for biology.

• Should we teach 
Physics 101 and 
Topology 101 before 
Biology 101?

7146

JPW January 2016: “Oh, shit. I’ve done it.”
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There is yet one more potential problem…

• We may not be able to understand what the 
computer tells us about biology.

• The next challenge is to create computers that can 
explain their findings to us…. 

• It might be as hopeless as explaining Shakespeare 
to a dog. 

Hod Lipson, 2009
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JPW 2012: All May Not Be Lost
See Spot Read: Willow the Dog 
understands written commands

“….the dog can now 
sit up when a card 
says ‘Sit Up,’ plays 
dead when a card 
reads ‘Bang,’ and 
wave a paw when a 
sign says ‘Wave.’ ”

http://www.peoplepets.com
/news/amazing/see-spot-
read-willow-the-dog-
understands-written-
commands/1

2006
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However…

We do not have to fully
understand a phenomenon 
to control or eliminate it. An 
effective model can 
accomplish a lot.

John Wikswo

Really Hard Problems



Organs on Chips are highly controlled, 
interconnected in vitro human organ 
preparations that support intensive 
data acquisition and control not 
possible in humans.

Use them accordingly.

7150



VIIBRE Organ-on-a-Chip Collaborators
Vanderbilt
• Vanessa Allwardt
• Frank Block III
• Frank Block Jr.
• Aaron Bowman
• Clayton Britt
• Jacquelyn Brown
• Young Chun
• David Cliffel
• Erica Curtis
• John Scott Daniels
• Jeffrey Davidson
• Anna Davis
• Mona Everheart
• William Fissell
• Greg Gerken
• Lucas Hofmeister
• William Hofmeister
• Orlando Hoilett
• Chaz Hong
• Shane Hutson
• Deyu Li
• Chee Lim
• Ethan Lippmann
• Dmitry Markov

AstraZeneca
• Matthew Wagoner, Jay Mettetal, Kristin Fabre, 

Aditya Kolli, Sudhir Deosarkar
CFD Research Corporation

• Kapil Pant, Prabhakar Pandian
• Andrzej Przekwas 

Charite Hospital, Berlin (2012-2014)
• Katrin Zeilinger, Marc Lubberstadt, Fanny 

Knöspel
Cleveland Clinic and Flocel Inc.

• Michael Deblock, Kyle Lopin, and Chaitali Ghosh
• Damir Janigro (Flocel)

Harvard/Wyss (2011-2015)
• Don Ingber, Kit Parker, Josh Goss, Geraldine 

Hamilton, Danny Levner
Johns Hopkins University

• Mark Donowitz
Los Alamos National Laboratory (2012-2014)

• Rashi Iyer
University of Pittsburgh

• Lans Taylor, Albert Gough, Lawrence Vernetti
University of Texas Medical Branch

• Mary Estes
University of Washington

• Jonathan Himmelfarb
University of Wisconsin

• William Murphy, William Daly

• William Matloff
• Lisa McCawley
• Jennifer McKenzie
• BethAnn McLaughlin
• John McLean
• Dusty Miller
• Karoly Mirnics
• Nicole Muszynski
• Diana Neely
• Kevin Niswender
• Virginia Pensabene
• Ronald Reiserer
• Philip Samson
• David Schaffer
• Kevin Seale
• Stacy Sherrod
• Mingjian Shi
• Matthew Shotwell
• Veniamin Sidorov 
• Hak-Joon Sung
• David Tabb 
• Adam Travis
• Donna Webb
• Hendrik Weitkamp
• Erik Werner
• John Wikswo

Funded by DTRA, DARPA, NIH/NCATS, EPA, AstraZeneca, VIIBRE, SyBBURE-Searle Bold = heavy lifting   Blue = PI 715



John Wikswo, 2006

“Look for the 
missing keys 
between the 
street lamps.”
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