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How do organ chips fit into the 
grand scheme of biology?
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JP Wikswo and AP Porter, EBM, 2015

Are we using 
the wrong 
topology as we 
describe the 
exploration of 
biology?
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A brief history 
of biology



Hermeneutics, noun

[hərməˈn(y)o͞odiks/]

The study of the methodological principles of 
interpretation (as of the Bible).

http://www.merriam-webster.com/dictionary/hermeneutic

The first order art and the second order theory of 
understanding and interpretation of linguistic and non-
linguistic expressions.

http://plato.stanford.edu/entries/hermeneutics/
Julia Wikswo 9



Hermeneutic Circle, noun
[hərməˈn(y)o͞odik ˈsərk(ə)l]

Whole

Parts

One cannot understand 
the whole until one 

understands the parts, 
and one cannot 

understand the parts 
until one understands 

the whole.

Gadamer,HG. Truth and Method. 2nd ed., Continuum,  New York,  2000 10
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JP Wikswo. The relevance and potential roles of 
microphysiological systems in biology and medicine. 
Exp.Biol.Med. 239:1061-1072, 2014. 13
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What are microphysiological systems?
Miniature in vitro models of human physiological systems 
comprising
• Engineered organoids (EOs), or
• Single organs-on-chips (OoCs), or
• Tissue chips (TCs), or
• Multiple interconnected organ chips, or
• A human-on-a-chip.
• NOT monocultures on flat plastic

15



How do you test a drug or regeneration protocol?

16

Marx, et al., ALTEX 33(3), 2016

The vertical axis illustrates approximate numbers of tests performed (grey) and 
related spending (blue). The horizontal axis illustrates the development time in years.

Drug development cycle: test throughput and cost profile



Organ-Chips, Organ Chips, Organ Chips…

Others, and there’s room to grow!

17



How are organs-on-chips being used?
Single and coupled organ-chip studies for
• Drug and environmental toxicology
• Pharmacology (PK/PD)
• Determination of drug efficacy
• The biology of rare diseases
• Organ-organ communication, including metastasis and toxicity
• Studying phenomena for which animal models are inadequate

18
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What makes regenerative medicine hard?
• The complexity of biology

• Developmental sequences
• Multiscale interactions

• The inaccessibility of the systems
• Sensing
• Control

• The lack of good in vitro models
• The lack of good systems biology models

21



Why is biology so complex?
• Today, one can easily detect 100,000 chemical 

species in 100 μL of rat serum.
• Cells are NOT well-stirred bioreactors but have 

anomalous diffusion and active transport.
• 109 - 1011 interacting cells in some organs.
• Cell signaling is dynamic, non-linear, multiscale, 

redundant, and has positive and negative 
feedback.

• Metabolism may have 5000 reactions.
• All-of-biology models might need Avogadro's 

number of PDEs, i.e., a Leibniz of PDEs (1 L = 
NA).

• We need new experimental approaches to get 
the optimal data to create better models..

UPLC-nESI-IM-MS 
John McLean

3.1 x 3.2 x 1.2 
µm3 beta cell 
Brad Marsh, 
PNAS, 2001 
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Complexity from multiscale interactions
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• Homeostasis is an orbit 
around an attractor in 
104-106 dimensional 
phase space.

• Aging and disease are 
extended trajectories in 
that space.

23



How have we been studying biology?

• Cells in vitro
2D biology on plastic: Many biological 
experiments are conducted on cells that

• have cancer,
• are inbred,
• are diabetic,
• are potatoes on a stiff plastic couch without exercise,
• enjoy neither gender nor sex,
• live almost entirely in the dark,
• gorge themselves on sugar once a day,
• may be slowly suffocating in an increasingly acidic 

environment,
• live in their own excrement,
• never bury their dead,
• may take a complete or only partial bath every day or two,
• and talk only to cells of like mind.

One might get reproducible, 
statistically significant results, 
but are they relevant to 
human biology and disease?

glasslaboratory.com/files/2245127/uploaded/GL-P100%20Petri%20Dish.jpg

tpp.ch/page/bilder/Produkte/TC_flasks_standard/flasks_all2.jpg

4ti.co.uk/files/cache/e7199a9f456dacab058c6be0b54e9235.jpg

1536 Well ~8 µl

5”

3 
3/

8”

384 Well ~40 µl

384 and 1536 images courtesy of 
David Weaver

• Animals

• People

Animals, including non-human primates, 
are not people and have significant 
genetic and physiological differences.

We are severely limited in isogenetic
controls, interventions, and data when 
studying normal subjects and patients.

Watson, Hunziker, and Wikswo, Exper. Biol. and Med., 2017 24



A hot, new in vitro model for biology

• 3D Organoids
Are self-organizing models with tissue-level 

functions and disease phenotypes.
Demonstrate development
Excellent cell-cell coupling
Good for immunofluorescent imaging
Can be transplanted
Can be a medium-to-high throughput assay
Hard to replicate an individual organoid
Hard to perfuse or apply uniform shear stress
Poor clearance / high buildup of compounds on 

inner lumen
No effluent sampling from intracellular 

compartments
Low tissue volumes for secretome sampling
Hard to quantify barrier functions
If floating, cannot apply mechanical 

stresses/loading
Can be dependent on Matrigel or engineered 

hydrogels
Hard to visualize when living
Hard to integrate with other organ systems with 

proper volumes
Contributions from Kapil Bharti (NIH/NEI) 

Lancaster, … , Knoblich. Cerebral organoids model human 
brain development and microcephaly. Nature, 2013.

Markov, … , McCawley. Thick-tissue bioreactor as 
a platform for long-term organotypic culture and 
drug delivery. Lab Chip 12:4560-4568. 2012. 

Complex 3D biology is a better model than 2D biology.
2012
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A hot, new in vitro model for biology

• 3D Organoids
Are self-organizing models with tissue-level 

functions and disease phenotypes.
Demonstrate development
Excellent cell-cell coupling
Good for immunofluorescent imaging
Can be transplanted
Can be a medium-to-high throughput assay
Hard to replicate an individual organoid
Hard to perfuse or apply uniform shear stress
Poor clearance / high buildup of compounds on 

inner lumen
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compartments
Low tissue volumes for secretome sampling
Hard to quantify barrier functions
If floating, cannot apply mechanical 

stresses/loading
Can be dependent on Matrigel or engineered 

hydrogels
Hard to visualize when living
Hard to integrate with other organ systems with 

proper volumes
Contributions from Kapil Bharti (NIH/NEI) 

Lancaster, … , Knoblich. Cerebral organoids model human 
brain development and microcephaly. Nature, 2013.

Markov, … , McCawley. Thick-tissue bioreactor as 
a platform for long-term organotypic culture and 
drug delivery. Lab Chip 12:4560-4568. 2012. 

Complex 3D biology is a better model than 2D biology.
2012

If you need 1536-well drug screens, 
then 3D spheroids and organoids
may be just what you need!
If you need more sample mass for 
quantitative analysis, polarized 
endothelial/epithelial barriers, or 
are worried about organ-organ 
interactions, then you need to think 
about organ chips!

26



Another hot new in vitro model for biology

• Organ Chips
Better than 2D biology
Ideal for barrier functions
Good sampling of effluent from both apical and basal side of 

cell layer
Can reproduce physiological flows
Provides a thick ECM for scaffolding and drug/factor binding
Support organ-organ interactions
Sufficient tissue for multi-omics of 10’s to 1000’s of variables
Can use minimal media volumes
Will be vascularized soon
May ultimately reduce drug costs
Possible to build a single-patient homunculus
Could build animals-on-chips
Can require microfluidics and control
Not yet high throughput
Today it is difficult to extract cells
Are expensive today (hardware, effort, human cells, real 

estate)
Not fully validated vs in vivo, e.g., no WGCNA yet
Can’t be transplanted

T cells in a lymph node on a chip

Shannon Faley, Kevin Seale and John Wikswo, 
Vanderbilt

Mammary gland on a chip

Lisa McCawley and Dmitry Markov, 
Vanderbilt

Brain on a chip Jacquelyn Brown and 
John Wikswo, 
Vanderbilt

Heart on a chip

Veniamin Sidorov 
and John Wikswo, 
Vanderbilt

Complex 3D biology is a better model than 2D biology.

27



The Volume Problem in MicroPhysiological Systems

B) The “Volume problem” 
in dishes and wells: 
paracrine, autocrine and 
endocrine factors diluted 
by a factor of 1000.

D) Pipetting between 
reservoirs may not solve 
the volume problem

E) Integrated microfluidics 
should solve the coupled 
organ volume problem.

Cell = 1 pL

Daily media  = 1 nL

A)

10 mmMedia

Plastic

Cells 10 μm

Media 10,000μm

Plastic

B)

Cells

Media

Plastic

Glass

12 μm

C)

Cells
Media

Media

20 μm

10 μmCells

Media

Glass

GlassPlastic

D)

Pump

LiverGut
Brain

Kidney

20 μm

10 μmCells

Media

Glass

GlassPlastic

E)C) Microfluidics can 
reduce the volume of a 
single organ-on-chip.

A) A pL cell requires a nL 
of fresh media each day.

The “Volume problem” 

Fresh 
Media

JP Wikswo, Exp.Biol.Med. 
239: 1061-1072, 2014. 28



How might microphysiological systems 
contribute to regenerative medicine?
• Provide in vitro models that are more  realistic than biology 

on flat plastic
• Provide in vitro models that are simpler than animals and 

easier to control
• Support measurement of cell-cell and organ-organ 

communication
• Support demonstration of cell-level control

29



What do we need to make both
regenerative medicine and 

microphysiological systems easier?
• Sourcing cells
• Assembling cells
• Perfusing cells
• Maintaining physiological scaling
• Analyzing the cells
• Controlling the cells

Optimization of cell differentiation and expansion

Better models of cell signaling and metabolism

30



VIIBRE’S Microformulators – Single then Multiwell

MicroClinical Analyzer/MicroFormulator for automated sensor 
calibration and time-division multiplexing to create toxin and drug 
cocktail exposures

AstraZenca: in vitro simulation of in vivo toxicology

V1.0 24- and 96-Channel push-pull 
MultiWell MicroFormulators for in 
vitro pharmacokinetic control at 
AstraZeneca

VIIBRE’s Automated Multi-Pump 
Experiment Running Environment 
(AMPERE) Well Plate Tool. Lead 
engineers Erik Werner and Greg Gerken

Enables in vitro chronobiologyLead engineer Ron Reiserer CN Bio Innovations PhysioMimix™ Exposure Response System

Developed by CN Bio 
Innovations under 
license from 
Vanderbilt University

31



iPSC-Differentiation MicroFormulator (Lippmann & Wikswo)
The MicroFormulator 
will provide long-term 
control of the cellular  
chemical environment.

32
Waddington 1957 



NVU/BBB UPLC-IM-MS workflow

Data Alignment and Biostatistical Analysis
Progenesis QI

time

Sample Acquisition
LC IM-MS/MS of metabolite extracts

LPS or Cytokine treated samples

m/z

R
el

at
iv

e 
Ab

un
da

nc
e

LC

IM-
MS/MS

time

Network and Pathway analysis 
MummichogNetwork & Pathway  Module Output  

Pathways Analysis p-value
Vitamin E metabol i sm 8.00E-05

Glutathione Metabol i sm 1.13E-03
Prostaglandin formation from 

arachidonate 6.48E-03
Aspartate and asparagine 

metabol i sm 9.95E-03

Drug metabol i sm - cytochrome P450 9.97E-03

Brown et al., J. Neuroinflammation, 2016
Metabolomic pathway analysis with high mass-accuracy MS facilitates the 
incorporation of untargeted metabolomics into mechanism of action studies. 

Sample preparation 
metabolites extracted using 
ice cooled methanol:H2O 
(80:20), incubated -80⁰C 
overnight, spun down at 
15,000 rpm, 15 min 
dried down in vacuo

NVU

NVU exposed to 
cytokine cocktail
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Does the metabolomic (and eventually 
proteomic) secretome contain sufficient 
information about cellular differentiation to 
provide a non-destructive control signal for 
iPSC differentiation?

Erin Rericha, Stacy Sherrod, Sui Huang, and John Wikswo 34



Proteins in Secretome vs Cytosol

Chevallet, et al. Proteomics. 2007. What is the small-molecule, metabolite secretome?

Proteins From Cell 
Lysate

Protein Secretome of Immature 
Dendritic Cells 

Protein Secretome of LPS-
Activated Dendritic Cells 

Protein Secretome Lysate Proteins
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HL60 Differentiation to Neutrophil-Like Cell

Morphological changes evident after 3-4 days of treatment with 
either dimethylformamide (DMF) or all-trans-retinoic acid 
(ATRA), including changes in surface microvilli to more ruffled 
structures  (scale bar 10 microns)

Images from Fleck 2003 In Vitro Cell Developmental Biology

DMF

ATRA

HL60 cells treated for 96 hrs show increased antigen 
expression consistent with neutrophil-like behaviors
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HL60 Differentiation - Data Sets:

2012: 

Naïve HL60

DMSO

ATRA

0Hrs 2Hrs 168Hrs

….

0Hrs 2Hrs 168Hrs

….

Metabolite concentration 
measured by UPLC-IM-MS

1649 species

Effluent extracted, frozen, and shipped to Vanderbilt for UPLC-IM-MS

256Hrs

256Hrs

….

…. Analysis by Dr. Stacy Sherrod
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0Hrs 2Hrs 168Hrs

….

2004: 

Naïve HL60

DMSO

ATRA

0Hrs 2Hrs 168Hrs

….

RNA measured by Affymetrix
gene expression
3,861 species

Cells extracted, pelleted and frozen at Harvard

Huang, S., et al., "Cell fates as high-dimensional 
attractor states of a complex gene regulatory network." 
Physical Review Letters 94(12): 128701 (2005). 



2 4 8 12 18 24 48              72 96              120 144 168

DM
SO

Gene Expression Dynamics Inspector (GEDI)

AT
RA

0 0.5 1.0 1.5-1.5 -1.0 -0.5

Sui Huang arranged the relative expression (to t=0) of the 3861 species into self-organizing 
maps (SOMs), showing treatment paths in genetic space

DM
SO

AT
RA

0 6 12 24 48                   72 96                  120 144 168

Metabolite Expression Dynamics Inspector (MEDI)
0 0.5 1.0 1.5-1.5 -1.0 -0.5

Huang, S., et al., "Cell fates as high-dimensional attractor states of a complex 
gene regulatory network." Physical Review Letters 94(12): 128701 (2005). 

Analysis by Dr. Erin Rericha
39



Principal Component Analysis of the Differentiation Trajectories

Analysis by Dr. 
Erin Rericha

The metabolomic secretome can distinguish 
between the two differentiation pathways.

ATRA
DMSO

40



Transcriptome

Secretome

PC1 is HL-60 differentiation PC2 & PC3 show the pathway differences

Principal Component Analysis of the Differentiation Trajectories

Analysis by Dr. 
Erin Rericha

ATRA
DMSO
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Transcriptome principal components 
1, 2, & 3 explain 52% of the variance

Secretome principal components 
1, 2, & 3 explain 49% of the variance

HL60 Differentiation to Neutrophil-Like Cell:
Matlab Principal Component Analysis

Analysis by Dr. Erin Rericha

ATRA
DMSO
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Secretome

Transcriptome

~20 hrs

Maximum variation in RNA 
expression precedes maximum 
variation in secreted 
metabolism by ~20 hrs

HL60 Differentiation to Neutrophil-Like Cell: Euclidean Distance

The secretome contains differentiation information, 
but with the expected delay and broadening.

Analysis by 
Dr. Erin Rericha
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Development of closed-loop control

Existing 
Differentiation 

Protocol

Secretomics + Intracellular 
Multi-Omics

Targeted MS and 
NanoString™

Untargeted 
MS

Identify 
Correlations

Build a 
Network

Graybox Model

Blackbox Model

Mechanistic Model

New Control 
Approaches

Phase 3

Sensing
Modeling
Control

Alter procedure in simple ways

Mechanistic prediction testing

Model-driven optimization

Close the loop
Begin Phase 1 for the next cell type

µFormulator 
Experiment

Phase 2Phase 1

Joey Simmons

44
A three-phase analysis should improve control of differentiation.



Secretome and Cellular Multi-Ome for Controlling iPSC 
Differentiation and Bioprinted Tissue Maturation

iPSC Cell 
Culture

Cell 
Differentiation

MicroFormulator 
Optimizations of 
Differentiation 

Protocols

Cell 
Maintenance

Tissue 
Characterization

MicroFormulator 
Media 

Optimization

Cellular 
Proteomics and 

Histology

Secretome 
Metabolomics 

and Proteomics

CAPCAS 
SmartLid Well-
Plate Feeder

Organ Chip 
& Tissue 

Bioprinting
Cell 

Characterization
Tissue 

Maturation

Data 
Integration 

and 
Modeling

MALDI Mass 
Spectrometry 

Imaging

Tissue

Cell Pellet

Secretome

MicroFormulators

Mass 
Spectrometers
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What do we need to make both
regenerative medicine and 

microphysiological systems easier?
• Sourcing cells
• Assembling cells
• Perfusing cells
• Maintaining physiological scaling
• Analyzing the cells
• Controlling the cells

46

Better models of cell signaling and metabolism

Given the complexity of biology, these models need large numbers of measurements that are optimally designed.
This is best done by artificial intelligence and machine learning.



Ross King’s Robot Scientists Adam and Eve

D

A

BB

C

A) Adam, with an automated –20°C freezer, three liquid handlers, three automated +30°C incubators, two automated plate readers, three robot arms, two automated plate slides, an automated plate centrifuge, 
an automated plate washer, two high-efficiency particulate air filters, and a rigid transparent plastic enclosure. Autonomously, Adam specified and recorded 6,657,024 optical density measurements @595 nm 
to form 26,495 growth curves, and formulated and tested 20 hypotheses concerning genes encoding 13 orphan enzymes. B) Eve, constructed at the University of Manchester and now being reassembled at 
CUT, combined multiple software tools with integrated laboratory robotics to execute C) three semiautomated cycles of diauxic shift model improvement. All the experiments were formalized and 
communicated to  Eve’s cloud laboratory automation system for execution to expand the current model of the yeast diauxic shift. The final model adds a substantial amount of knowledge: 
92 genes (+45%) and 1,048 interactions (+147%), illustrated in part in D). King et al., Comp. 2009;. Williams et al., J R Soc Interface, 2015; Coutant, et al., PNAS, 2019. 47



Microbial culture: Batch versus continuous

48

A

A) Three serial-batch measurements of yeast 
growth with differing inhibitor concentrations. 

A) In batch culture, gene expression profiles change throughout the growth phase, with continuously 
changing levels of nutrients, metabolites, and signaling molecules. This may not matter for an end-
point analysis.

B) In chemostats, gene expression profiles are relatively constant for long periods of time, which is ideal 
for quantitative multi-omic measurements of signaling and metabolism required for network 
reconstruction.

B

B) A continuous-perfusion chemostat experiment that after seeding reaches 
a steady state growth rate that represents a balance between inflow of 
media with the rate-limiting nutrient and efflux of cells and media. The 
inhibitor concentration can be changed without reseeding the bioreactor.

Batch Continuous



The Genesis Project
• Ross King to John Wikswo, October 2019

– Can you build my third-generation robot scientist, Genesis, 
a 4,000 channel chemostat?

The Microbial 
Chemostat, 1950

Novick A and Szilard L. Experiments with the 
Chemostat on Spontaneous Mutations of 
Bacteria. PNAS 36 (12):708-719, 1950.

Aaron. Novick and Leo Szilard. Description of the 
Chemostat. Science 112 (2920):715-716, 1950.

Monod, J. (1950). "La technique de culture 
continue théorie et applications." Annales 
de l'Institut Pasteur 79: 390-410
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Benchtop Bioreactors Today

Smaller volume, higher-count systems are needed!

The traditional benchtop bioreactor has been a 3-litre unit which offers a lot of 
flexibility and information to plan scale-up to production and considerable flexibility. 
These are available from reputable suppliers and include Mobius from Merck 
(Germany), BioBLU from Eppendorf (Germany), Applikon from Getinge (Sweden), 
Infors (Germany), Cytiva (USA/Sweden), and Pall (USA).

50
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What is available for small-scale, multichannel bioreactors?
A

B

C

D

A) The open-source eVOLVER 
system developed at Boston 
University and available from 
Labmaker.org provides 16 10 
mL bioreactors, pumps, and 
control electronics. 

B) The Cytena c.Bird continuous-
mixing modules use pneumatic 
actuation to increase oxygen 
transfer rate in a 96- and 24-
well plate. It cannot operate as 
a chemostat. 

C) The Erbi Breez™ single-use 
microbioreactor, developed at 
MIT, has a 2 mL working 
volume with independent 
measurement of pH, dissolved 
oxygen (DO), optical density 
(OD), and temperature, can 
input up to four fluids, and 
controls three gasses.

D) The m2p Labs BioLector™ and 
RoboLector™ automated fed-
batch, pipette-loaded 
fermentation system uses either 
a single 48 flower-shaped 
shaken well plate or, as shown, 
a microfluidic enabled one with 
4 banks of 8 bioreactors and 2 
banks of 8 reservoirs for pH and 
nutrient control. 

51

Existing multichannel chemostats, clonal expansion systems, and well 
plate shakers don’t scale to a thousand parallel, independent systems.
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What are the medium to large-scale systems?

1. Gas Sparge Tube
2. Sample Port with Cap
3. pH and DO Sensor Spots
4. Impeller

4

3

1

2

A

B

C

D

F

E

A-B) Sartorius “High throughput system” with 24 15 mL bioreactors
C-D) Sartorius “High throughput system” with 24 250 mL bioreactors
E-F) Sartorius Bioreactors scaled to production. 
G) The NovaBiomedical BioProfile Flex2 Automated Cell Culture Analyzer, 

which can withdraw samples from up to 10 bioreactors, count cells, and 
perform metabolic measurements every 10 minutes.

G

Smaller volume, higher-count systems are needed!
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What’s New? 

How do you best expand from thousands of single cells to a dozen cloning bioreactors?

Berkeley Lights - Beacon Optoselect
1.7nl x1750, 0.32nl x11000  

53

0.3 or 1.7 nL
NanoPens(TM)  

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.globenewswire.com%2FNewsRoom%2FAttachmentNg%2Fb5d5bccb-0edd-490a-8b2d-df9f59f88df9&psig=AOvVaw2D-lONPaO6uRUX2obHWDYr&ust=1646478106035000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCLDtkoinrPYCFQAAAAAdAAAAABAD


The Market Driving the Genesis Project
• Biology is complicated

• There is an intense need to accelerate cellular sensing and control
• Medicine
• Pharmacology
• Biotechnology
• Basic research

• There is an immediate market for systems with thousands of perfused, mL-volume 
bioreactors, wells, or chemostats

• Microbial chemostats
• Continuous flow bioreactors
• Batch-fed bioreactors
• Organ chips
• Well plates and TransWells
• Zebrafish larvae

The explosive growth in biopharmaceuticals and 
the high attrition of candidate clones from 
discovery to manufacturing ensure a potential 
market for Genesis.

Artificial intelligence and machine learning can 
accelerate discovery by creating general-purpose, 
modular, self-driving laboratories for fully automated 
biology. This is Genesis.
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The 
Genesis 
Concept
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Ron Reiserer



Genesis 1.0 and 2.0 Concept
• Compact, mL chemostats operating in a 

deep 48-well plate
• Multichannel microfluidic pumps and valves
• An automated fluidic control system
• Self-contained sterility, thermal, and gas 

control

56



A B C

D

VIIBRE Version 4.0 Microfluidic Pumps and Valves
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E

F

G
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VIIBRE Version 4.0 Microfluidic Pumps and Valves

We are steadily 
debugging our 
CNC G-Code.
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Genesis 1.0 12-Well MicroChemostat

• Formulate the lower bank of Input Reservoirs
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12x Optical 
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1

Patents issued and pending 59



Genesis 1.0 12-Well MicroChemostat

• Formulate the upper bank of Input Reservoirs
• Pump the lower bank of Input Reservoirs into the MicroChemostats
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Genesis 1.0 12-Well MicroChemostat

• Formulate the lower bank of Input Reservoirs
• Pump the upper bank of Input Reservoirs into the MicroChemostats
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Genesis 1.0 12-Well MicroChemostat

• Formulate the lower bank of input reservoirs
• Pump the upper bank of input reservoirs into the chemostats
• Continuously remove media from chemostats and send to analysis and waste
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Genesis 1.0 12-Well MicroChemostat

• Formulate the upper bank of input reservoirs
• Pump the lower bank of input reservoirs into the chemostats
• Cycle a small volume of media from chemostats and back to measure pH
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Genesis 1.0 12-Well MicroChemostat

• Stop MicroFormulator
• Stop chemostat pump
• Rapidly transfer media to Output Plate for freezing and transcriptomics, etc.
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Geneteric Control Software Screen Shots

24 February 2022

GUI for planning and system debugging. CAPCAS HW 
will be driven by CAPCAS DB without user intervention.

65



CAPCAS Subsystems
Continuous Automated Perfusion Culture Analysis System (CAPCAS)

CAPCAS-IT
Information Technology and Hardware Control
• Instruction retrieval from CAPCAS-DB
• Definition of processes and procedures
• Pump, valve, and sensor autocalibration
• Closed-loop process initiation and control
• Data acquisition from sensors and CAPCAS-HW
• Data preprocessing
• System status and upload to CAPCAS-DB
• Repeat all as needed

CAPCAS-HW
Distributed Hardware for Fluid and Plate Handling

• Chemostat/bioreactor/well-plate/organ-chip setup
• Media microformulation
• Continuous media delivery/perfusion
• Reservoir level, perfusion rate, and bubble control
• Gas mixture control
• Temperature control
• Sensor operation and reporting to CAPCAS-IT
• Sample collection and delivery

CAPCAS-AN
On-Line, At-Line, and Off-Line Analytics

• Optical density
• pH
• Oxygenation
• Impedance spectroscopy
• Fast solid-phase extraction, quadrupole, time-of-

flight mass spectrometry
• Real-time cellular imaging
• Raman spectroscopy, etc.

CAPCAS-AI
Artificial Intelligence / Machine Learning Software

• Database management (CAPCAS-DB)
• Hypothesis generation
• Optimal experimental design
• Specification of key experimental parameters
• Data acquisition design and data analysis
• Hypothesis testing and revision
• Model generation and updating
• Repeat all as needed

CAPCAS provides unique experimental 
design, control, and analysis capabilities!
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Genesis 1.0 & 2.0 Chassis concept
• Self-contained sterility, thermal, and gas 

control
• One 96-well input reservoir plate
• One 48-well deep-well chemostat plate
• One 96-well sample-transfer well plate
• Separate motor/electronic and fluidic 

compartments
• Modular fluidics can be treated as a 

disposable cartridge
– Input module
– Chemostat module
– Output module
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Genesis Applications
• Chemostats

– Yeast
– Bacteria
– CHO cells
– Manufactured cellular products

• Gravity-perfusion of organs-on-chips
• Conventional 6 to 96 well plates with adherent cells

– Optimization of stem-cell differentiation protocols
– Imposition of multi-hormone circadian rhythms

• Continuous/circadian feeding of zebrafish in 12-well TransWell plates
• Mechanical and electrical stimulation with cardiac I-Wire
• Perfusion bioreactors with cell capture/return for antibody production, harvest 

of conditioned media, and protein engineering
– Spiral-sorter
– Tangential flow filter
– Alternating tangential flow

• Automation in BSL-3 and BSL-4
• All capable of being driven by a Robot Scientist

68Patents issued and pending

The ultimate value of Genesis is the 
information that pharma and biotech 
can obtain with it to guide the 
design, optimization, and control of 
cell lines and cell-culture processes.



How do you go from one 
48-well-plate chemostat to 

200 separate plates? 
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Genesis 3.0 Concept
• Self-driving laboratory with artificial 

intelligence/machine learning
• 10 sec/sample SPE-IM-Q-TOF mass 

spectrometry metabolomics
• iPlateBot holonomic robot
• Continuous Automated Perfusion Control 

and Analysis System (CAPCAS) enclosure 
for >1,000 chemostats, perfusion 
bioreactors, and organ-chips

Human Access Side 
Full Extension Sides for Plate 

Module Access

HEPA Filtered Air Conditioning and Monitoring 
Module Supply side fan for positive pressure 

in rack space outlet side passive

HEPA 
Filter

HEPA 
Filter

HEPA 
Filter

Elevator

Power Bus

Luer Array Fluid 
Bus

New plate 
stack

Waste Bin for Used 
Plate Collection 

ejected from plate 
insertion module

Plate Insertion/
Extraction Module

Each plate module 
has individual 

temperature control 
+/- 25C from ambient

Holonomic drive 
plate carrying robot

Human-accessible side Limited-human-access, robot arm side

Circulated loop 
for liquid delivery

Circulated loop 
for thermal 

control

µF

Human-
accessible 
side

Limited-human-access, 
robot-arm side
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Genesis in a multi-deck environmental chamber

71

Human-accessible side Limited-human-access, robot arm side

Patents issued and pending



Genesis holonomic iPlateBot

72

D

A B

C

A-B) An empty iPlateBot and one carrying a deep 48 well plate. 
C) Plate gripper/lifter detail. 
D) First 3D print of a holonomic wheel-motor assembly.

The iPlateBots are small and light enough that they do not present a 
hazard to human operators. Hence these robots can operate alongside a 
human on a benchtop, in a cell culture hood, or at other workspaces.

Patents issued and pending



Empty iPlateBot
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iPlateBot carrying a deep-well plate

74Patents issued and pending



Well plate lifted into place and latched
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iPlateBots in an automated incubator
• The iPlateBot delivers a plate to an assigned fluidic station in the 

incubator.
• The plates are raised and latched into the fluidic handling station.
• The iPlateBot departs for another assignment.
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Patents issued and pending



Well plate lifted into place and latched
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Well plate lifted into place and latched
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Well plate lifted into place and latched
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Well plate lifted into place and latched
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Well plate lifted into place and latched
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SmartPlate Technology for Advanced Cellular Models (STAC-M)

82Patents issued and pending

NIH/NCATS SBIR Contracts 
HHSN271201600009C and 
HHSN271201700044C to 
CFDRC, Kapil Pant, PI

Sam Michael, NIH/NCATS 
technical manager

Idea

Proposal

The Smart Lid 
Concept - 2015



BSL-3 Airway and BBB organ-chip SARS-CoV-2 experiments 
are easier with gravity perfusion

Perfusion 
reservoirs

Permeable
membrane

Epithelial
chamber

Endothelial
chamber

Glass 
substrate

Funded by NIH NCATS, in collaboration with Dr. Aarthi Narayanan, GMU

A lid with an integrated pump, 
fluidic channels, and needles will 
enable long-term recirculation.

Large reservoirs = 24-hour perfusion at 
1 to 5 µL/min with no bubble problems

In all three devices, blood-
brain barrier function was 
better than (below) our 
2x10-6 cm/s2 cut off!

A plastic dish can 
provide secondary 
containment and an 
internal reservoir can 
ensure humidification of 
the chips.

As soon as we were shut down for COVID-19, 
we started engineering new devices for BSL-3 
that required no external hardware:

Compatible with 
iPlateBot and Genesis
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Patent Pending



Multi-Organ Sampling System - Under development 
• Box
• Lid
• Two needles
• Valve
• Pump
• Tubing

84
The hybrid pumped/gravity feed may be the best of both worlds.



Bone Marrow Chip

• Nature self-organizes the branching, lengths, and diameters of the microvasculature 
to achieve proper function. 

• It will take a bit of engineering to recapitulate the physiology.
• It will require even more engineering to make that massively parallel.

Careful pressure regulation is required to make this chip function properly.
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Lots of pipettes, tight pressure ranges, but it works nicely!



Steve George and Scott Simon  – Proposed concept

Figure 6. Schematic of initial design concept for peripheral infection-bone marrow microfluidic device. The device should achieve numerous unique and 
challenging features of mimicking peripheral infection-bone marrow interactions; in particular, the relative volumes and flows of the systemic circulation, the 
marginated pool of neutrophils, bone marrow, and site of infection (see text for details).  In the initial design, the volume of bone marrow is subdivided into 10 separate 
parallel compartments, similar to the distribution of bone marrow in vivo (details below in Fig. 7).  The systemic circulation is a larger compartment that facilitates 
mixing, the marginated pool of neutrophils receives mixed systemic circulation, and the peripheral infection compartment (site of infection is blue) is a separate, 
smaller compartment (details below in Fig. 8).  Media/blood is recirculated using a peristaltic pump, and there are ports for sampling fluid/cells and to refresh the 
media/blood.  A fraction of the systemic media/blood flow is diverted to the bone marrow and peripheral infections compartments using a variable resistor in the 
systemic line that is proportional to the volume of the tissue.
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The numbers

* Based on a typical human adult volume of 2.5 liters of marrow and 5 liters of blood, and the size of a typical peripheral 
infection (1 cm3).
$ Adult blood volume of 5 liters and a cardiac output of 5 l/min at rest.
§ Based on volume and residence time of the peripheral circulation.
# clearance rate of radioisotope in human bone marrow equivalent to resting muscle and blood flow to bone is ~ 3-5% of cardiac 
output; corresponds to 0.02 ml.ml-1.min-1 3, 4

2E4 dynamic range3E3 dynamic range
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Multi-Organ Sampling System – Funded concept

V2

P3
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Multi-Organ Sampling System - Under development 
• Box
• Lid
• Two needles
• Valve
• Pump
• Tubing
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The hybrid pumped/gravity feed may be the best of both worlds.

If you can do this for 
one chip, Genesis can 
do it for hundreds and 
even thousands, all 
controlled by a Robot 
Scientist.



Genesis: high throughput biology for a wide variety of samples
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• 42 U telecom/server rack with HEPA filtering, thermal control, and 
iPlateBot access to every plate station on each deck.

• 1.0 mL stirred chemostats in a 48-well plate
– 48 chemostats per chemostat plate
– 3 plates per module (input, chemostat, output)
– 4 modules per deck
– 9 decks per rack
– 1,728 chemostats per rack, or

• Gravity perfused organ chips 
– 2 organ-chips per plate
– 12 plates per deck
– 9 decks per rack
– 216 chips per rack
– If redesign for 12 per plate for 1,296 per rack, or

• 200 µL perfused wells in a 96 well plate 
– 96 wells per plate
– 1 plate per module 
– 12 modules per deck
– 9 decks per rack
– 10,368 perfused wells per rack, or

• 24-well Transwells
– 24 wells per plate
– 1 plate per module 
– 12 modules per deck
– 9 decks per rack
– 2,592 perfused Transwells per rack, or

• 12 well Transwells with zebrafish
– 5 zebrafish per well
– 12 wells per plate
– 12 plates per deck
– 9 decks per rack
– 6,480 zebrafish per rack

Pump-pressurized lids will enable perfusion heights greater than 10 mm (>100 
Pa) and will minimize endothelial/astrocyte overgrowth

High-throughput parallel 
MPS studies will be 
feasible in Genesis! 

Patents issued 
and pendingiPlateBots and Genesis are ideal for BSL-3 and BSL-4



How do we design 
the experiments?

What do we do 
with the terabytes 

of data?
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Artificial Intelligence: The future of biology
Five types of artificial intelligence (AI) / machine learning (ML)
• Symbolic, e.g., Ross King and abductive reasoning models
• Connection, e.g., neural nets and deep learning
• Evolutionary, e.g., Hod Lipson and genetic programming
• Bayesian, e.g., probabilistic inference
• Analogy, e.g., support vector machine
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Each has its strengths and weaknesses for Genesis: 
• Genesis is using symbolic AI to design optimal experiments.
• It could use genetic programming to optimize protocols without models.
• As soon as Genesis has statistical data and/or prior knowledge, it can use 

Bayesian approaches.
• As soon as there are correlative data, it will readily use deep learning and 

support vector machines.



Dennis Bray understands the problem…

• “The past few decades have seen such an explosion of knowledge 
about the contents of living cells that we now swim in an ocean of 
data.”

D. Bray. Reductionism for biochemists: how to survive the protein jungle. Trends Biochem.Sci. 22 (9):325-326, 
1997.

• “How can we come to terms intellectually with such an enormous 
number of interacting entities?”
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A possible failure mode

Ontological failure:  The phenomenon you are interested in 
requires elements or laws outside of the set you have been 
given.

D. Bray. Reductionism for biochemists: how to survive the protein jungle. Trends Biochem.Sci. 22 (9):325-326, 
1997.
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The solution to ontological failure

Get more data…

95 95



There is a second possible failure mode

Ontological failure:  The phenomenon you are 
interested in requires elements or laws 
outside of the set you have been given.

Epistemological failure: You have enough 
elements and the laws do apply, but you 
yourself cannot understand the explanation 
that they provide.

D. Bray. Reductionism for biochemists: how to survive the protein jungle. Trends 
Biochem.Sci. 22 (9):325-326, 1997.

A possible failure mode
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The solution to epistemological failure

Get a smarter, bigger brain…
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There is yet one more potential problem…

• We may not be able to understand what the computer tells us about 
biology.

• The next challenge is to create computers that can explain their 
findings to us… 

• It might be as hopeless as explaining Shakespeare to a dog. 
Hod Lipson, 2009
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All may not be lost

See Spot Read: Willow the Dog understands 
written commands

“….the dog can now sit 
up when a card says ‘Sit 
Up,’ [play] dead when a 
card reads ‘Bang,’ and 
wave a paw when a sign 
says ‘Wave.’ ”

http://www.peoplepets.com/new
s/amazing/see-spot-read-willow-
the-dog-understands-written-
commands/1
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Are there risks with AI and biology?

• Machine learning can identify or design toxic chemicals
• Robot scientists can test for or optimize toxicity
• Robot scientists can screen for or evolve pathogens
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Dual use of artificial-intelligence-powered drug discovery
Fabio Urbina, Filippa Lentzos, Cédric Invernizzi and Sean Ekins

Nature Machine Intelligence, 4: March 2022, pp 189–191
“An international security conference explored how artificial intelligence (AI) technologies for drug discovery could 
be misused for de novo design of biochemical weapons. A thought experiment evolved into a computational proof.”
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The full automation of biology 
will present ethical challenges.

We need to address them at the 
outset and design in safeguards.
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A decade of progress …
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Today!

Tomorrow
MicroPhysiological Systems 

need MORE engineering!



Genesis: A self-contained, integrated, intra-incubator, high-throughput, fluidic 
experiment control system for BSL 2, 3, and 4 and robot science

An alternative to large, room-sized systems that rely on daily media changes and 
transport of plates or organ chips between incubator, fluid handler, and plate reader:
• Multi-channel microfluidic WiFi pumps and valves, and ribbon fluidics microformulate

media for each well/chemostat/organ.
• SmartLid system provides continuous perfusion, PK and circadian profiles, metabolic 

sensing, and sample collection.
• Well plates, transwells, 48-well mL chemostats, perfusion microbioreactors, and gravity-

perfused organ chips all have an ANSI/SBS well-plate footprint for transport and 
containment.

• Can connect to SPE-IM-MS metabolomics @ 10 s per well.
• SmartLid fluidic control modules are fixed above multiple decks within a vertical 

environmental chamber that provides biosafety containment, temperature, and humidity 
control.

• Holonomic iPlateBot well-plate transporter delivers a well plate or organ chip array to a 
stationary plate station, lifts it and latches it in place, and departs for another assignment.

• iPlateBots pose no mechanical risk to human operators.
• iPlateBot can deliver different SmartLids to a station for different configurations and well or 

organ layouts.
• iPlateBots can move through aseptic tunnels between workstations and enclosures.
• Refreshed/recirculated gravity perfusion of organ chips eliminates the bubble problem and 

enables massive parallelization.
• Bag-based perfusion fluid delivery.
• On-demand ImagingBot visits well plates as needed.
• Can have seeding/infection stations within the enclosure.
• Plate can be autoclaved at the end of the experiment without otherwise leaving the 

enclosure.
• Chamber can be UV and gas sterilized.
• Can be configured at user appropriate scale, from single deck with 12 plates operating in 

a containment hood to a self-enclosed rack with 9 decks and 10,368 perfused wells.
• Can operate as a Robot Scientist for automated design and execution of experiments.
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