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Topics 
• The advantages of micro/nanoscale instruments 
• Cellular complexity 
• The need for closed-loop control 
• How to identify early manifestations of disease 

– Modeling 
– Interactive, dynamical analysis 
– Mining dynamics data 
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Historical Evolution of Spatial 
Resolution in Biology and Physiology 

X-Ray / SEM / STM 
Optical microscope 
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• Genomics 
–Structural 

genomics 
   … 

• Proteomics 
–Structural 

proteomics 
–Functional 

proteomics 
   … 

• What is next? 

Presenter
Presentation Notes
800 bc Egyptian hieroglyphs depicting simple glass meniscal lenses

721-705 bc	"Lanyard Lens" discovered at Nimrod by Lanyard, now believed to be just an ornamental piece that fell from its mounting

705-681 bc		Quartz convex lens (f10cm)  found among ruins of the palace of King Sennacherib of Assyria (705-681 bc) in 1885
1590 	Zacharias Janssen invents the microscope
1674 	Anton van Leeuwenhoek invents compound microscope (wrong)
1932 	Ernst Ruska builds the first electron microscope 
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The rate at which DNA sequences began The rate at which DNA sequences began 
accumulating was exponentialaccumulating was exponential
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Hypotheses I and II 

 
I.  The explosion in genomic and proteomic 

knowledge and measurement techniques will 
revolutionize the early detection of diseases 
 

II.  Much of the potential lies in the clinical 
implementation of the instrumentation and 
techniques that provided the scientific foundation 
for genomics and proteomics 
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Technologies for Early Disease Detection 
• Analysis of biofluids 

– Molecular profiles that define biological states (Dahl) 
– Disposable plastic lab-on-a-chip devices for point-of-care systems  (Luke Lee) 
– Indwelling biosensors and analyzers (Stephen C. Lee) 
– Chemokine and cytokine expression (Barrett Rollins; Philip R. Streeter) 
– Gene expression patterns (Carl W. Cotman; Marti Jett) 
– Detection of mutant alleles (Helmut Zarbl) 
– Protein expression/distribution (Philip R. Streeter; Gordon R. Whiteley) 

• Single-pass analysis of proteins, cells and tissues  
– Detection of small numbers of molecules (Roger Brent) 
– Multispectral cellular imaging (David Basiji) 
– Protein distribution in tissues (Richard Caprioli) 

• Interactive cellular assays for systems biology 
– Disease/pathogen-induced changes in cells (Christopher Chen) 
– Nanoscale sensing of single molecule binding (Michael Roukes) 
– Massively Parallel, Multi-Phasic Cellular Biological activity detectors (John 

Wikswo) 
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Technologies for Early Disease Detection 
• Analysis of biofluids 

– Molecular profiles that define biological states (Dahl) 
– Disposable plastic lab-on-a-chip devices for point-of-care systems  (Luke Lee) 
– Indwelling biosensors and analyzers (Stephen C. Lee) 
– Chemokine and cytokine expression (Barrett Rollins; Philip R. Streeter) 
– Gene expression patterns (Carl W. Cotman; Marti Jett) 
– Detection of mutant alleles (Helmut Zarbl) 
– Protein expression/distribution (Philip R. Streeter; Gordon R. Whiteley) 

• Single-pass analysis of cells and tissues  
– Detection of small numbers of molecules (Roger Brent) 
– Multispectral cellular imaging (David Basiji) 
– Protein distribution in tissues (Richard Caprioli) 

 
• Key Features: 

– Low temporal bandwidth sensing 
• Slow events, long measurement intervals or single-pass imaging 

– Semi-standard, static biochemical analyses 
• Feature correlation and pattern recognition 

– Will benefit directly from advances in genomics and proteomics 
– May involve significant issues in bioinformatics 
– Will benefit from Micro/Nano  
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Standard Rationale for Micro & 
Nanoscale Analytical Systems 

BioMicroElectroMechanical Systems (BioMEMS) 
• Low-cost mass production 
• Automated analysis 
• Reduced instrument footprint 

– Single instruments are very, very small  

– Reduced volumes of analyte and reagents 
– Massively parallel 

• Increased data 
• Lower cost per datum 
• Combinatorics for frontal assault on multivariable systems 

• Enabling new physical/chemical properties 
– Single molecule detection 
– Quantum dots 
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• ~2,000 valves to 
control 

– Reagents 
– Samples 
– Wash steps 
www.fluidigm.com 

Protein Microprocessor 

Courtesy of Michael Lee 

http://www.fluidigm.com/
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Live-Cell Microprocessor 

Courtesy of Michael Lee 

Presenter
Presentation Notes

Isolation of a single or group of live cells. 
Execution of cellular assays for a range of applications:
High content reagent perfusion with record perfusion times of less than 300 msec 
Kinetic assays, such as calcium flux 
Cell morphology studies
Redirection of cells to an on-chip chamber for cell culturing. 
Reduced sample and reagent requirements, critical in experiments when reagents of cell lines are precious. 
Flexibility to perform a wide variety of assay types involving individual live cells or groups of live cells. 
Can isolate a single or group of live cells and execute a range of cellular assays all in a closed system. 
128 individual cell capture sites. Once cells are captured, the microprocessor controls reagent perfusions at each site. 
www.fluidigm.com
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Genomics 
 

Proteomics 
 

What is next? 
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Topics 
• The advantages of micro/nanoscale instruments 
• Cellular complexity 
• The need for closed-loop control 
• How to identify early manifestations of disease 

– Modeling 
– Interactive, dynamical analysis 
– Mining dynamics data 
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Hypotheses III and IV 

 
III.  Historically, dynamical studies of cellular 

metabolism and signaling pathways have been 
limited by the bandwidth of laboratory 
biochemistry 
 

IV.  BioMicroElectroMechanical Systems 
(BioMEMS) offer promise to extend the 
measurement bandwidth for both research and 
clinical diagnosis 
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Technologies for Early Disease Detection 
• Interactive cellular assays for systems biology 

– Disease/pathogen-induced changes in cells (Christopher Chen) 
– Nanoscale sensing of single molecule binding (Michael Roukes) 
– Massively Parallel, Multi-Phasic Cellular Biological Activity 

Detectors (John Wikswo) 
 

• Key Features: 
– More closely related to experimental physiology than classical clinical 

biochemistry 
– Can involve rapid sensing of physiological dynamics 
– Measurement bandwidth << physiological bandwidth 
– Real-time intervention is REQUIRED to probe the dynamics 

• Internal vs. external feedback 
• “Bandwidth is everything” 

– May require models for interpretation of complex interactions 
• There may be significant computational contraints to multiscale dynamical 

models 
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Post-Reductionism 

Thermodynamics 
  
Statistical 
mechanics 
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What about dynamic processes? 

•Physiology is dynamic 
–Cell cycle  
–Developmental differentiation 
–Growth 
–Voltage- and ligand-gates ion channels 

•Propagating waves 
•Signaling cascades 

–Closed-loop feedback and control 



Cytion Planar Patch Clamp 

Courtesy of Christian Schmidt and Will Lachnit 

V = +60 mV  -> E > 12 000 V/m !! 
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Array of Ion Channels 

 Direct, Real Time Molecular Sensor/Reader 
 Sensors, Switches, Amplifiers, Filters, Power Generators, …. 
 Demonstrate High Speed DNA Read-out for Applications 
such as DNA Computing, Bio-Sensing, … 
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Single Device  
Architecture 

Molecular Scale  
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Courtesy of Ananta Krishnan, DARPA 
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Physical and Biological Time 
Constants, Seconds 

 

Mixing time to homogenize liquid in a large-scale bioreactor (10-100 m3)   104 -108 
90% liquid volume exchange in in a continuous reactor   105 -106 
Oxygen transfer (forced not free diffusion)     102 -103 
Heat transfer (forced convection)      103 - 104 

 
Cell proliferation, DNA replication     102 -104 
Response to environmental changes (temperature, oxygen)  103 -104 
Messenger RNA synthesis      103 -104 
Translocation of substances into cells (active transport)   101 -103 
Protein synthesis       101 -102 

Allosteric control of enzyme action     1 
 
Glycolysis       10-1 -10-2 
Oxidative phosphorylation in mitochondria    10-2 

Intracellular quiescent mass & heat transfer (dimension 10-5 m)  10-5 -10-3 
Enzymatic reaction and turnover     10-6 -10-3 
Bonding between enzyme & substrate, inhibitor    10-6 

Receptor-ligand interaction      10-6 
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The Systems Physiology 
Challenge 

• Use experimental measurements, numerical 
simulations, and knowledge of the genome and 
proteome to unravel the complex, multiscale 
interactions and dynamics in normal physiology, 
toxic exposures, and disease 

– Metabolic networks 
– Intracellular and extracellular signaling 

• Gene expression 
• Protein interactions 
• Cell-cell interactions 
• Active transport 

– Development, growth, aging, death 
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Bio(Metabolic)
Models Physical(Sensor/Effector) 

Models
Control Strategy 

Models

Generator

Biological
Simulator

MicroBiologist

Sensor/Micro
Specialist

Diagnostician System Synthesis

BioPhysical Microcontroller Design Environment

Generator

Cell Diagnosis
Models

E-Cell
Application-Specific
 Bio-Microcontroller

Physical
Device

Software, Hardware,
Configuration Info

Simulator
Configuration

J0265-d05001_System Synthesis Courtesy of Ted Bapty 

Biological Modeling and Analysis 

Presenter
Presentation Notes
DO NOT USE IN THE PATENT

Biological modeling and analysis.  A variety of models are used as the basis for the synthesis of complete analysis and control systems, which in turn can be used to generate the expected inputs/outputs to a cellular system, either in the form of an integrated cellular model (lower left) or a physiological system (lower right).

***************
We will investigate methods for modeling the behavior of the bio-physico-chemical processes in the system. There are several well-established concepts for modeling (e.g. rate equations, metabolic “loops”) that have been used in the past. The biological diagnostics process will be modeled in a separate aspect, enabling the molecular biologist experts to express the testing and differential analysis to isolate root causes. Examples for these novel techniques include bond graphs, state charts, and hybrid system modeling languages, which may offer new ways for representing the behavior of complex systems that scale better with complexity than traditional approaches. 

A control aspect is planned to enable design of microcellular responses to identified cellular events (i.e. an electronically controlled toxin antidote).

The goal of developing a modeling approach for the biological processes is to support the BIO component of the project to “engineer the cell”. This will be supported by accompanying analysis tools that simulate cell behavior. If possible, we will use existing simulators and generate input for those from our modeling language (using Model-Integrated Computing (MIC) technology that was developed under DARPA funding). 
1.1.2            Circuit modeling and analysis
The modeling environment will support representation of the sensor and information processing resources to be used in the biocontroller. The capabilities and topologies of the resources will define the potential systems that can be constructed from the devices.
Circuit analysis is a well-established field in its own right, and to develop new modeling concepts and analysis tools would be redundant. We will use tools that are already available (e.g. SPICE), and will interface them to our integrated modeling environment. Again, the MIC technology will be employed in synthesizing the interfaces. 
1.1.3            Integrated models
In our previous experience, we have learned the importance of multiple-aspect, integrated models, that capture the structure and behavior of complex systems. An integrated modeling paradigm that captures models from biological processes and electronic processes, and their interrelationships. From this common, shared model set we will generate inputs for the “biological” and “electronic” simulator tools, that will operate in concert to perform a complex analysis of the integrated system. We believe this integrated modeling approach is a key component in designing these systems where the two aspects of the system cannot be decoupled. Our technology (MIC) supports the creation of these integrated modeling tools that will facilitate a composite view of the entire process, including 
·        Metabolic/Biological to represent the relevant biological processes in the system,
·        Resource, to represent available sensor and computational devices,
·        Algorithmic to represent the computational activities in the device (including analog and digital computing)
·        Actuation aspect to represent how the electronic component can influence the biological processes
·        The key issue here is that these modeling aspects are not independent but interacting. Changes on the model in one aspect necessitates changes in other aspects. To manage these interactions we will use our existing meta-programmable modeling tools.
1.1.1            Model verification
Integrated models are built and simulated using the simulation tools. However, the models need to be verified with respect to the real system. We plan to perform this model verification by using the actual device, and comparing data generated by the device with the output of the simulation. Because the sensory part of the device facilitates measurement on the cellular processes, we can collect data electronically and directly compare it with the simulation results. As a further experiment, we can form residuals, and fine-tune the parameters of our models in an adaptive manner (not unlike the techniques used in system identification). 
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Postgenomic 
Integrative/Systems 
Physiology/Biology 

• Specify concentrations and 
• Rate constants 
• Add gene expression, 
• Protein interactions, and 
• Signaling pathways; 
• Include intracellular spatial 

distributions, diffusion, and 
transport, 

• … and calculate how the 
target cell behaves in 
response to a toxin or 
pathogen 
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G-Protein Coupled Receptors 

Courtesy of Heidi Hamm 
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Molecular Interaction Map: DNA Repair 

KW Kohn, “Molecular Interaction Map of the Mammalian Cell Cycle Control 
and DNA Repair Systems,” Mol. Biol. of the Cell, 10: 2703-2734 (1999) 
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Molecular Interaction Map: Cell Cycle 

KW Kohn, “Molecular Interaction Map of the Mammalian Cell Cycle Control 
and DNA Repair Systems,” Mol. Biol. of the Cell, 10: 2703-2734 (1999) 
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The Catch 
• Modeling of a single mammalian cell may 

require 100,000 variables and equations 
• Cell-cell interactions are critical to system 

function 
• 109 interacting cells in some organs 
• Models may be leibnitz-class  
• The data don’t yet exist to drive the models! 
• Hence we need to experiment… 

 
*1 leibnitz = 1 mole of PDEs ~ 1 etaFLOPS-year 
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Topics 
• The advantages of micro/nanoscale instruments 
• Cellular complexity 
• The need for closed-loop control 
• How to identify early manifestations of disease 

– Modeling 
– Interactive, dynamical analysis 
– Mining dynamics data 
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The Experimental Problem 
• Most chemical and metabolic sensors and actuators  

– Are too slow to track biochemical events at the cellular level 
– Are made one at a time 

• Biological systems contain extensive closed-loop, 
multilevel, feedback and control 

– Simple, single-step observations cannot discern how control is 
distributed through the system. 

– Closed-loop metabolic control is today possible only at the 
animal and organ level, e.g., glucose clamp 

– Chemical control is limited by diffusion, stirring, uncaging rates, 
or the time required to move a cell from one medium to another 

• Post-genomic physiology needs multiparameter, wide-
bandwidth cellular metabolic and signaling sensing and 
control 
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What do we need? 

• Simultaneous, fast sensors                             
(transducers) that detect a                        variety 
of changes within                                  and 
outside the cell 

• Actuators that control the             
microenvironment within and outside the cell 

• Openers for the internal feedback loops 
• System algorithms and models that allow you 

to close and stabilize the external feedback 
loop 

• … 

CELLCELL TRANSDUCERACTUATOR

Integration and FeedbackIntegration and Feedback
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The Challenge: Instrument 
and Control the Cell 

• Develop the tools and techniques for 
integrative, post-genomic cellular biology 

– Genes 
– Proteins 
– Metabolic and signaling pathways 
– Instruments 
– Models 
– Wide-bandwidth dynamic control theory for 

cellular systems 
• How do normal and diseased cells function? 
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Instrumenting the Single Cell 
• Arrays of instrumented single or multiple cells:  

Rapid, sensitive, and accurate differential diagnosis of 
cellular pathophysiology 

• Cellular dynamics: Discrimination between causal and  
secondary events 

• Functional biopsy: Determine the state of specific 
physiological pathways and mechanisms affected by an 
as-yet undetected disease, and thus define a prophylaxis 
or therapy. 

• Artificial, minimal cells: engineered to serve as 
dedicated, configurable, robust on-chip biosensors. 

  “Quantitative physiology at the speed of life,” C. Kovac 
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Possible Approaches 

• A biological cell or molecule inserted 
into a microinstrument, e.g., a single-
cell spectrophotometer or a whole-cell 
patch clamp 

• A nanoinstrument inserted into the 
cell/molecule, e.g., caged ATP 

• Combine the two approaches to form an 
FAST integrated, closed-loop 
bio/nano/micro system 
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MicroBottle 

• Goal – utilize proven gigaOhm seals to biological 
membranes 

• Result – high-speed microfluidics and silicon 
microelectronics can be placed “inside” a living cell 

Control

+ _ + _

Fluidics Layer
Ionics Layer

Electronics Layer

Presenter
Presentation Notes
Figure 6: MicroBottle Device Architecture. The bio-silicon hybrid MicroBottles (MBs) will sense changes in specific, membrane-based biochemical processes.  MBs combine a biological membrane and biological and synthetic nanostructures with a silicon container, microfluidics, and microelectronics. 

The MicroBottle will provide the direct interface to measuring and controlling ion concentrations on both sides of a cell or synthetic membrane. The MicroBottle concept can be adapted to a variety of intriguing concepts, where the biological element is an active component in the circuit design. The MicroBottle is used as sensing element and allows the release of its content or in case of a cellular cap simulate the cell change cell function. The key components of the MicroBottle are the silicon or polymer base layer that contains or supports the sensing, signal processing and logic, the structural assembly, supporting microfluidics for delivery of ionic species, and, the membrane, the biologically active element. Multiple PC and MBs will also be connected via intercellular gap junctions to detect toxins that affect cell-cell communication. 

***************
Our objectives are to develop Multicellular Bio-Silicon Hybrid Microsystems, devise the biophysical informatics design environment required to operate them, and to identify the problems that are best suited for solution with such devices. Our approach to these objectives can be divided into the three processes required for closed-loop analog feedback and control: sensing, reacting, and signaling. Each process has critical "spin-offs" of value unto themselves. The first proposed application of these systems would be for the identification of unknown toxins; the integration of these functions to form programmable biomicrocomputing devices will have much wider applicability.




38 

Hypotheses V and VI 

V.  Great advances in physiology have been made 
through opening physiological feedback loops 
and applying external control 

– Frank-Starling cardiovascular regulation 
– Glucose/insulin regulation 
– Hodgkin-Huxley model of the nerve action 

potential 
VI.  There will exist a class of diseases or 

susceptibilities to drugs or toxins that can be 
diagnosed through altered cellular dynamics 
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Physical and Biological Time 
Constants, Seconds 

 

Mixing time to homogenize liquid in a large-scale bioreactor (10-100 m3)   104 -108 
90% liquid volume exchange in in a continuous reactor   105 -106 
Oxygen transfer (forced not free diffusion)     102 -103 
Heat transfer (forced convection)      103 - 104 

 
Cell proliferation, DNA replication     102 -104 
Response to environmental changes (temperature, oxygen)  103 -104 
Messenger RNA synthesis      103 -104 
Translocation of substances into cells (active transport)   101 -103 
Protein synthesis       101 -102 

Allosteric control of enzyme action     1 
 
Glycolysis       10-1 -10-2 
Oxidative phosphorylation in mitochondria    10-2 

Intracellular quiescent mass & heat transfer (dimension 10-5 m)  10-5 -10-3 
Enzymatic reaction and turnover     10-6 -10-3 
Bonding between enzyme & substrate, inhibitor    10-6 

Receptor-ligand interaction      10-6 
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A Key Rationale for Micro & 
Nanoscale Analytical Systems 

• Wide measurement bandwidth, i.e., good  
response to high frequencies, is required to 
track fast cellular events 

• Stable control of fast systems requires high 
bandwidth 

• Small is the best way to beat the time for 
diffusional mixing in large-scale assays 

• Small lets one look at individual cellular 
events rather than ensemble averages 
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Lactate Diffusion Times 
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What do we gain by small and fast? 

• Electrochemical sensitivity scale-invarient; frequency 
response improves as size is decreased 

• Decreased mixing times for mass and heat transfer 
• Reduced reagent volumes for rapid injection 
• Many nanocultures within a single device 
• Monitor known, small (N=1?) number of cells in each 

nanoculture 
• Array of NanoBioReactors, in parallel, in series, and 

with redundancy for high-content screening 

Fast, small, and many by moving from 
milliliters and microliters to nano and picoliters! 
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Chemical Clamp 

• Sensors: Advanced micro and                                       
nanosensors can quantify the extra-                           
cellular and intra-cellular                                          
environments with unprecedented                                
temporal resolution 

• Actuators: Microfluidics can control extracellular and 
intracellular concentrations of key chemicals with 
millisecond-response picoliter pumps 

• Openers: RNAi, genetic knockouts, and blockers will 
allow opening of the internal feedback loop 

• Controllers: It will be possible to create high-speed 
extracellular and intracellular chemical clamps 
functionally equivalent to voltage clamp for Vm 

Fluidics

Electronics

+ _ + _

C Co on nt tr ro ol l

Fluidics

GigaOhm Seal

Intracellular
Fluid

Cell Extracellular
Fluid
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High-Content Toxicology Screening 
Using 

Massively Parallel, Multi-Phasic 
Cellular Biological Activity Detector 

 (MP2-CBAD) 

Vanderbilt University 
Departments of Biomedical Engineering, Chemical 
Engineering, Chemistry, Mechanical Engineering, 

Molecular Physiology & Biophysics, Physics & Astronomy 

DARPADARPA
ctivity 

 etection 

echnologies 
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Cell Metabolism 
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Presenter
Presentation Notes
In metabolic networks the flow of mass and energy is the essential purpose of the machinery.
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Discrimination 

Toxin 

Sensor Array Output  

pH DO Glc Lac CO2 NADH 

Discrimination 
Matrix 

NanoPhysiometer 
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Control Contro l

Temp.
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     Vanderbilt Instrumenting the Single Cell 

Advanced Technology for next generation CBW Biosensors 
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Ionics Layer
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Coupled Modeling of Cell and Environment 

Electrochemical Sensors:   
• Zero concentration at surface 
• Sensor signal proportional to 

concentration gradient at surface 
• Customizable location, geometry 

Single Cell Model:   
• Membrane shape coupled to flow 
• Membrane fluxes specified according to 

environment and dynamic metabolism model 

Symmetry 
plane 

Channel Walls:   
• Impermeable or permeable 

Inlet Flow:   
• Pressure driven or electrokinetic 
• Specified analyte concentrations 

Outlet 

• Convective-diffusive transport of analytes by a 3D time-dependent flow 
• Cell boundary conditions controlled by dynamic metabolism model 
• Computational model built with CFD-ACE+ (CFDRC) 

Mark Stremler and Steven Yu, 
Mechanical Engineering 
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The Challenge: 
Convert Steady-State 

Metabolic Flux 
Balances to Dynamic 

Metabolic Network 
Responses 

          
 

 Glucose + 2 ADP + 2 NAD+   2 Pyruvate + 2 ATP + 2 NADH 

 Pyruvate + NADH  Lactate + NAD+ 

 
Pyruvate + CoA + FAD 
 + GDP + 3 NAD+ + NAD(P)+  

 
3 CO2 + FADH2 + GTP 
  + 3 NADH + NAD(P)H 

 0.5 O2 + 3 ADP + NADH  3 ATP + NAD+  
 0.5 O2 + 2 ADP + FADH2   2 ATP + FAD 

     

 

Oxidative 
Phosphorylation 

Glycogen 
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CO 2 
NADH 

NAD+ 

NADH 

Glycolysis 

TCA Cycle 

NADPH 
Oxidase 

NAD+ 
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NAD+ 

NADH 
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Cycle 

− O − 
2 

NADPH 
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Acidification 



 
Devices/Systems 

Exploit Proteins as High Performance Nanoscale Signal Processing 
Devices 
 Create Technologies to Assemble, Integrate and Interconnect Protein 
Devices with Silicon Circuitry (Biology-to-Digital Converter)  

Direct, Real Time Conversion of Bio-Molecular  
Signals into Electronic Information 

Biological 
Sensing 

Bio-Chemical 
Signal Processing 

Reaction 

Proteins Cellular Machinery 
Biological 
Response 

Signal Processing 
in Silicon  

Silicon DSP 

Electro-Chemical 
Signaling 

Electrical Signals 

Antenna, Filter 
And LNA 

Real-Time 
Information 

Bits/Bytes for 
Wireless Relay, 
Storage, Further 

Processing 

Courtesy of Ananta Krishnan, DARPA 
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Bio-Molecular Devices/Systems 

Biological and Biochemical Preamplifiers to 
Biological Amplifiers and Detectors 

Signal Processing 
in Silicon  

Silicon DSP Electrical Signals 

Antenna, Filter 
And LNA 

Real-Time 
Information 

Bits/Bytes for 
Wireless Relay, 
Storage, Further 

Processing 

Biological 
Sensing 

Bio-Chemical 
Signal Processing 

Reaction 

Proteins Cellular Machinery 
Biological 
Response 

Electro-Chemical 
Signaling 

Biochemical and 
Silicon 
Signal Processing 

Reaction and 
Real-Time 
Information 

Cells on Silicon 
Bio-Electronic Response 

Electro-Chemical 
Signaling 
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Topics 
• The advantages of micro/nanoscale instruments 
• Cellular complexity 
• The need for closed-loop control 
• How to identify early manifestations of disease 

– Modeling 
– Interactive, dynamical analysis 
– Mining dynamics data 
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Biological Modeling and Analysis 

Presenter
Presentation Notes
DO NOT USE IN THE PATENT

Biological modeling and analysis.  A variety of models are used as the basis for the synthesis of complete analysis and control systems, which in turn can be used to generate the expected inputs/outputs to a cellular system, either in the form of an integrated cellular model (lower left) or a physiological system (lower right).

***************
We will investigate methods for modeling the behavior of the bio-physico-chemical processes in the system. There are several well-established concepts for modeling (e.g. rate equations, metabolic “loops”) that have been used in the past. The biological diagnostics process will be modeled in a separate aspect, enabling the molecular biologist experts to express the testing and differential analysis to isolate root causes. Examples for these novel techniques include bond graphs, state charts, and hybrid system modeling languages, which may offer new ways for representing the behavior of complex systems that scale better with complexity than traditional approaches. 

A control aspect is planned to enable design of microcellular responses to identified cellular events (i.e. an electronically controlled toxin antidote).

The goal of developing a modeling approach for the biological processes is to support the BIO component of the project to “engineer the cell”. This will be supported by accompanying analysis tools that simulate cell behavior. If possible, we will use existing simulators and generate input for those from our modeling language (using Model-Integrated Computing (MIC) technology that was developed under DARPA funding). 
1.1.2            Circuit modeling and analysis
The modeling environment will support representation of the sensor and information processing resources to be used in the biocontroller. The capabilities and topologies of the resources will define the potential systems that can be constructed from the devices.
Circuit analysis is a well-established field in its own right, and to develop new modeling concepts and analysis tools would be redundant. We will use tools that are already available (e.g. SPICE), and will interface them to our integrated modeling environment. Again, the MIC technology will be employed in synthesizing the interfaces. 
1.1.3            Integrated models
In our previous experience, we have learned the importance of multiple-aspect, integrated models, that capture the structure and behavior of complex systems. An integrated modeling paradigm that captures models from biological processes and electronic processes, and their interrelationships. From this common, shared model set we will generate inputs for the “biological” and “electronic” simulator tools, that will operate in concert to perform a complex analysis of the integrated system. We believe this integrated modeling approach is a key component in designing these systems where the two aspects of the system cannot be decoupled. Our technology (MIC) supports the creation of these integrated modeling tools that will facilitate a composite view of the entire process, including 
·        Metabolic/Biological to represent the relevant biological processes in the system,
·        Resource, to represent available sensor and computational devices,
·        Algorithmic to represent the computational activities in the device (including analog and digital computing)
·        Actuation aspect to represent how the electronic component can influence the biological processes
·        The key issue here is that these modeling aspects are not independent but interacting. Changes on the model in one aspect necessitates changes in other aspects. To manage these interactions we will use our existing meta-programmable modeling tools.
1.1.1            Model verification
Integrated models are built and simulated using the simulation tools. However, the models need to be verified with respect to the real system. We plan to perform this model verification by using the actual device, and comparing data generated by the device with the output of the simulation. Because the sensory part of the device facilitates measurement on the cellular processes, we can collect data electronically and directly compare it with the simulation results. As a further experiment, we can form residuals, and fine-tune the parameters of our models in an adaptive manner (not unlike the techniques used in system identification). 
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Signal Classification: Feature Extraction 

Courtesy of Ted Bapty 

Presenter
Presentation Notes
The most important phase of signal classification is the initial feature extraction.  Feature extraction can take the form of simple mathematical operations on signals (add/subtract, compute slope/area-under-curve) or can incorporate metabolic information via parameter matching to biological models. Design of the feature extraction algorithms will be an iterative process.  The INFO tool will permit rapid definition and assessment of arbitrary feature extraction algorithms.  The figure above illustrates a step in this process.   The initial attempt  selects a set of sensor inputs (temperature, oxygen, pH, etc.. ).  A first-order differential equation model of a metabolic pathways is used to extract features from T, pH, and NADPH amongst other algorithms.  A Principal-Component-Analysis (PCA)/Cluster separation reveals that the classes are only separable with a 20% confidence level.
In the lower half of the figure, a refinement of the feature extraction changes the biological model to 2nd order and adds a new model as a feature (O-).  Successive PCA shows that the classes are now separable with a 90% confidence level. The feature extraction primitives will include  (1) Standard mathematical/DSP functions, (2) Model Parameter Identification for 1st, 2nd, and 3rd order rate equations, (3) Mean transit time and Impulse response models, and (4) Kinetics of mass/heat diffusion.  In addition, generic ‘shells’ will be available to perform user-defined analysis. 
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Agent Discrimination Algorithms 

Courtesy of Ted Bapty 

Presenter
Presentation Notes
A following hypothetical flow chart illustrates the classification process for agent discrimination.  Step 1 defines a diagnosis tree, defining the overall logic for successive refinement of agent classification.  Each branch involves a set of control actions. Step 2: selection of cell types to be exposed and reagent quantities and definition of a specific assay.  Step 3: specifies the assay as a combination of sensor selection and preprocessing/feature extraction algorithms using libraries of algorithms.  Step 4: determines a classification method (from a library of classification methods) that is applied to the features to produce a classification, using the laboratory and field-derived historical database.  This classification information is used to select the next branch of the diagnosis tree. 
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Data Mining/Exploration 

Courtesy of Ted Bapty 

Presenter
Presentation Notes
Data mining/exploration in the data base.  When building the experimental classification database in an unsupervised mode, the input to the algorithms are unlabelled examples. Unsupervised classification algorithms are used to discover natural structures in the data and can provide valuable insight into the problem and guide the development of classification system. As described, the tool we propose can be used for a wide range of applications. On one end of the spectrum, it can be used to design decision trees that are based entirely on deep physiological knowledge. In this scenario, the number of features at each decision node would be relatively limited and assignment to one class or the other would be made on the goodness of fit between data and model. On the other end of the spectrum it can be used to design classification systems even if very little is known about physiological principles. In this scenario, the number of features would be large, the system provided with labeled examples, and it would simply compute decision boundaries in the feature space.  The following example shows a diagnostics path using the example in the Assay Development section.  Note that this is illustrative of the definition process and represents a small fraction of a complete diagnostics process.
The first stage is a broad spectrum assay.  Robust, relatively insensitive cells are used to provide a long-lived activity detector. The broad assay will separate responses into one of several broad classes, discriminated by a Maximum Likelihood Estimator. The figure illustrates the next step for Gram-Negative Bacteria.  A new set of engineered cell lines is selected for their sensitivity to the presence or absence of CD-14 (i.e., endotoxin receptor), along with instrumentation to measure the anticipated indicators.  The expected response is used to define a set of feature extraction algorithms.  In this case, a simple threshold serves as a classifier.  The third step in the path chooses intestinal cells to determine if a pathogenic enterotoxin is secreted by the gram negative bacteria, a set of sensors, feature extraction algorithms, and a MLE classifier. Robustness features are computed by the tool, using the database of measurements. The tool will make heavy reuse of results from a prior DARPA project in the Adaptive Computing Systems Program.  In that project, a design language was defined and implemented to create data-flow based real-time embedded systems.  The feature extraction algorithms will be defined using this tool.



57 

Conclusions 
• Micro/Nano will “increase throughput and automation, reducing cost 

per analysis, and enabling entirely new applications.”  C. Dahl 
• Understanding cellular dynamics is key to understanding cellular 

physiology 
• Micro/Nano will enable closed-loop control of certain cellular 

functions 
• Biology and biochemistry can serve as preamplifiers for biological, 

biochemical, and biophysical detectors  
– PCR of course, but what else? 

• Cell harvesting may be a problem for many tissues 
– Physiological biopsy 
– Pretransplant certification (pancreatic beta cells in islet transplants) 
– Well suited for probing drug interactions for particular phenotypes 

• Dynamic model complexity is a major challenge 
– Specification 
– Verification 
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