
Psychological Bulletin
1978, Vol. 85, No. 2, 247-253

Comment on "Estimating Coefficients in Linear Models:
It Don't Make No Nevermind"

James E. Laughlin
University of South Carolina

In a recent issue of Psychological Bulletin, Wainer claimed that it is rare when
weighting coefficients in linear prediction models need be other than equal. To
support this assertion he formulated and attempted to prove the equal weights
theorem. It is shown, however, that this theorem is in error and that the loss
in explained variance when replacing optimal least squares weights by equal
coefficients is twice as great as contended. An alternative formulation and
proof of the theorem is developed that (a) states the correct loss in explained
variance, (b) is not dependent on any assumed distributional form for the
optimal least squares weights, and (c) deals more relevantly with loss in
relative predictive accuracy. The practical implications of the original and
corrected equal weights theorems are briefly discussed.

In recent years there has been an increase in
research attention focused on methods for
estimating weighting coefficients in linear pre-
diction models. The interest in this problem
seems to parallel an increasing awareness that
commonly used least squares estimates of
population regression coefficients are quite un-
stable when based on small or moderate
samples of data. Although several different
methods have been proposed for deriving
weights that are not as sensitive to sampling
fluctuations, a major portion of recent research
interest has centered on equal weighting
schemes. This research has primarily indicated
that in many circumstances the initial loss of
predictive accuracy incurred when switching
from sample least squares weights to equal
coefficients is far outweighed by an accompany-
ing large decrease in sampling error. This
consistent finding can be little disputed (e.g.,
see Beckwith & Lehmann, 1973; Dawes &
Corrigan, 1974; Einhorn & Hogarth, 1975;
Lawshe & Shucker, 1959; Lehmann, 1971;
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Schmidt, 1971, 1972; Trattner, 1963; Wesman
and Bennett, 1959; Fischer, Note 1).

In a recent issue of this journal, however,
Wainer (1976) attempted to develop this
argument supporting the adoption of equal
weighting schemes one strong step further. In
particular, Wainer purported to prove that in
many circumstances "almost no loss in ac-
curacy" (p. 213) is realized when optimal least
squares coefficients are replaced by equal
weights. If this assertion is true and is coupled
with the knowledge that equal weighting
schemes exhibit virtually no sampling error,1

then one could develop a powerful argument
supporting the use of equal weighting schemes
in almost all situations. It would indeed be
hard to conceive of any other weighting method
leading to almost optimally accurate pre-
dictions while exhibiting no sampling error.
In Wainer's own words, it would be "a very
rare situation that called for regression weights
which were unequal" (p. 216).

My purpose for commenting on the argu-
ments presented in Warner's article are three-
fold. First, I show that the equal weights
theorem, which Wainer developed to prove the

1 There is indeed no sampling error for relative equal
weights (e.g., all weights set to unity). These weights
are appropriate when relative rather than absolute
prediction is important.
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"almost no loss" assertion cited above, is in
error and that the loss in explained variance is
at least twice as great as he concluded. Second,
I present an alternative formulation and proof
of the equal weights theorem that (a) indicates
the correct loss in explained variance, (b) is
not tied to any distributional form assumed
for the optimal least squares weights, and (c)
deals more relevantly with loss in relative
predictive accuracy. Third, I briefly comment
on the practical implications of the original
equal weights theorem and the corrected ver-
sion detailed here.

Error in the Equal Weights Theorem

Wainer (1976) indicated that the loss in
variance explained when switching from a set
of K optimal least squares weights to a set of
equal coefficients can be measured by

Loss = (5 - al)'R(9 - fll) = (1)
where (3 represents a K X 1 column vector of
population least squares weights, a indicates
the common equal weight, 1 is a K X 1 column
vector of Is, and R represents the intercor-
relations of the predictors in the population.
When the K predictor measures are uncor-
related, as is a requirement of the equal weights
theorem, then this loss in explained variance
can be expressed simply as the sum of squared
differences between the least squares weights
ft and the common equal weight a. Wainer
showed that in order to determine the expected
loss in variance explained when switching (J
to a\, it is only necessary to (a) determine the
expected loss in changing any one ft to a
and then (b) multiply the resultant loss by K.

Before it is possible to evaluate the expected
loss numerically, assumptions must be made
concerning the population distribution from
which the fts are expected to arise. In the equal
weights theorem it is assumed that all possible
regression weights will fall within the con-
tinuous interval (.25, .75) and that the proba-
bility of observing a ft at different points in
this interval is constant. Given this population
form, Wainer contended that the expected loss
in switching any ft to a is given by

where 7 = ft- — a, and a is .5. It should be
noted that the integral in Equation 2 is
multiplied by 2 because it represents only one
half of the symmetric interval over which the
loss 72 is evaluated. However, using Equation
2 to express the expected loss for any ft
implies that the density of 7 is 1. This is
clearly in error. The density of 7 is equal to
the density of ft and, under the conditions of
the equal weights theorem, is given by/(y) = 2
(so that the total area under the (.25, .75)
rectangular distribution is 1). Hence, the
appropriate integral that expresses the loss
expected when switching any one ft to a is

E (Loss) = .
48

E(L0ss) =
96

Over K uncorrelated predictor measures the
expected loss is then AT/48, not K/96. Thus,
the loss in explained variance is twice as great
as Wainer contended.

In listening to the comments of colleagues
on Wainer's article, it is clear that there is also
some confusion regarding what is actually
proven in this equal weights theorem. It is
important to note that the above proof does
not show that the loss will be AT/48 when
switching a set of K optimal weights uniformly
spread out over the (.25, .75) interval to .5.
What is instead shown can be summarized
loosely as follows: Consider all possible sets of
K optimal weights that can be obtained when
each weight is allowed to take on a value
anywhere within the (.25, .75) interval. If we
were to determine for each of these sets the
loss in predictive accuracy when switching
the K optimal weights to .5, then the average
loss across sets would be AT/48. Note that this
average loss (i.e., expected loss) does not simply
consider the loss for a set of K weights uni-
formly spread out over the (.25, .75) interval.
It also considers, for example, the loss incurred
for a set of K weights that are all equal to .5
(where there would be no loss). Hence, the
loss to expect for K weights that are allowed
to vary over the (.25, .75) range is much
different from the actual loss incurred when K
uniformly spread out weights are switched to
.5. This difference is more concretely demon-
strated in Table 1.

Interestingly, if we were to adopt a guide-
line for determining what constituted an un-
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Table 1
A Comparison of Expected and Actual Losses in Explained Variance

Number of
predictors

2 .05,
3 .05,
4 .05,
5 .05,
6 .05,
7 .05,
8 .05,

Optimal

.55

.3, .

.22,
55
.38,

.175, .30,

.15,

.13,

.12,

.25,

.22,

.19,

.55

weights8

, .425, .
.35,
.30,
.26,

.45

.38

.34

55
, .55
, .47, .55
, .41, .48, .55

Actual
loss (%)»

12
12.
13.
15.
17.

.5
,5
9
,6
,5

19.4
21.,4

Expected
loss (%)•

4.17
6.25
8.33

10.42
12.50
14.58
16.67

" For convenience, the optimal weights presented are equally spread out over a (.05, .55) interval.
b Entries refer to the actual loss in explained variance when switching the specified set of optimal weights
to equal coefficients.
0 Entries refer to the expected loss, assuming each weight is uniformly distributed over some positive inter-
val of length .5.

acceptable loss in accuracy, such as the one
expressed by Green (Note 2), namely, that a
loss of 4% in total variance is serious, then it is
clear after viewing Table 1 that there would be
relatively few situations in which a switch to
equal weighting coefficients would be accept-
able. It is important to remember that this is a
rejection of changing from an optimal weights
model to an equal weights model in the popula-
tion of observations and not necessarily a re-
jection to adopt equal weights as a practical
alternative to sample least squares coefficients.
It has already been noted that in applied situa-
tions an equal weighting scheme may be pref-
erable due to its insensitivity to sampling
error.

Equal Weights Theorem: Revision 1

It would be useful here to formulate and
prove an alternative expression for the equal
weights theorem stating the correct loss in
explained variance when switching from
optimal to equal weights. In particular, it
would be informative for this revised equal
weights theorem to reflect two basic changes
in the form of the original theorem presented
by Wainer. First, it would be more appro-
priate for the revised theorem to deal with the
actual loss in predictive accuracy when switch-
ing K optimal weights to equal coefficients,
instead of the loss expected across all possible
sets of K weights that are restricted to fall
within some interval. The notion of expected
loss is simply not very meaningful in the

present context. That is, for many different
values of K and distributions of optimal
weights that might be considered, there will
be a large number of different sets of weights
evaluated in the expected loss that will simply
not be plausible sets of optimal weights under
the linear regression model. Thus, for example,
when it is assumed that each weight will fall
within the (.25, .75) range, and K is greater
than 4, over half of the sets of weights evalu-
ated in the expected loss will lead to a multiple
correlation greater than 1. Even when K = 2,
it is impossible to obtain two regression weights
equal to .75, since it suggests a multiple cor-
relation of 1.06. Thus, knowing the expected
loss in predictive accuracy is not as informative
as knowing the general form for the actual
loss in explained variance when switching any
K weights to equal coefficients.

Second, it would also be more appropriate
for the revised theorem to consider the loss in
relative predictive accuracy, rather than the
loss in absolute accuracy as does the original
theorem. As Wainer himself pointed out, rela-
tive prediction "is the most typical kind of
problem" (p. 216) found in the behavioral
sciences. Measuring the loss in terms of rela-
tive accuracy would thus be more informative
to the audience of this journal.

Given this consideration, I adopt the follow-
ing alternative measure to represent the loss
in relative predictive accuracy:

Loss = Rf -
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where Rp* is the squared multiple correlation in
the population of observations, and R^ is the
squared population validity for the equal
weights model (see Appendix for a more com-
plete justification of this loss measure). This
measure simply represents the difference in
proportional variance explained between the
optimal and equal weighting schemes. Note
that Equation 4 can also represent the loss in
absolute accuracy if it is assumed that (a)
all variables are standardized and (b) the
common weight is the optimal equal regression
coefficient.

Considering the basic changes in form men-
tioned above, the revised equal weights
theorem can be stated as follows :

When K uncorrelated predictor variables
x,- (i = 1, . . ., K) with zero means and unit
variances are used in a linear regression model
to predict a criterion variable y that is also
scaled to zero mean and unit variance, then
the proportional loss in variance explained
when switching from optimal to equal weight-
ing coefficients is K<rf, where vf represents the
variance of the K optimal weights. When only
one predictor is included in the linear model,
no loss in explained variance is realized.

Proof

The proof of this revised equal weights
theorem is straightforward. First, we know
that the loss in explained variance when
switching any K optimal weights to equal
coefficients can generally be measured by
Equation 4. In the equal weights theorem,
however, we are restricting attention to those
sets of predictors that are uncorrelated (i.e.,
R = I). Thus, substituting I for R in Equa-
tion 4 allows the loss to be expressible as

Equation 5 then leads the loss to be expressible
as

Next, note that the various matrix expressions
in Equation 5 can algebraically be written as

K K

3=1 3—1

and I'l = K, (6)

where /9 is the mean of the K optimal weights.
Substituting these algebraic equivalents into

K (KB}2 K

Loss = E ft-2 - ~~~ = E ft-2 -
j-i A r-\

(7)

which is well known to be Kerf.
The loss in predictive accuracy is thus solely

dependent upon the spread of the optimal
weights. If the fts are spread out equally over
some positive interval of length .5, then the
losses when switching to equal coefficients are
as given in the "Actual loss" column of
Table 1.

Note also that when only one predictor
measure is employed, <r^ = 0, and there is no
loss in relative predictive accuracy. That is,
we can switch the one ft- to any other positive
value and still retain the same correlation
between predicted and actual criterion scores.

Applicability of the Equal Weights Theorem

One of the main conditions of the equal
weights theorem is that the set of K predictors
be mutually uncorrelated. Unfortunately, it
is rare when such a condition can be met in
practice. Hence, unless some general state-
ments can be formulated concerning the loss in
explained variance as R increasingly departs
from I, the applicability of the equal weights
theorem will be extremely limited. Wainer
suggested that the loss in predictive accuracy
"can be diminished considerably ptalics added]
when the X;S are not independent" (p. 214).2

If this assertion is true, then we could consider
the loss expressed in the equal weights theorem
(where it is assumed that R = I) to represent
an upper bound for the loss in accuracy as R
increasingly departs from I. However, al-
though Wainer's assertion is in a sense tech-
nically correct, it is for the most part highly
misleading.

Consider that any set of K positive regres-
sion weights could have been based on one of
many different sets of intercorrelated predictors
(i.e., one of many different Rs). Then, point-

2 It is quite curious for Wainer to conclude that
"almost no loss" in explained variance (when R = I)
can be "considerably diminished" when there is inter-
correlation among predictors. This is clearly misleading.
How can almost no loss be considerably diminished?
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ing to such works as those of Wilks (1938),
Gulliksen (1950, chap. 20), and Ghiselli (1964,
chapt. 10), it can be shown that when switch-
ing to equal coefficients the loss in explained
variance will be smaller when the optimal
weights are based on a more highly intercor-
related set of predictors. Thus, Wainer's
assertion would appear substantiated.

Note, however, that as we consider some set
of optimal weights to be based on different
possible Rs, we are correspondingly considering
these weights to be based on different possible
sets of predictor-criterion correlations.
Further, note that when the correlations in R
get higher, so also will the predictor-criterion
correlations in order for the same K positive
weights to remain optimal. This is where the
misleading part of Wainer's assertion can be
recognized. As the range of correlations in R
is allowed to increase, it requires an increas-
ingly unrealistic range of predictor-criterion
correlations to retain the same weights as
optimal. In relation to Wainer's original
theorem, as R is allowed to depart from I,
it becomes increasingly unrealistic to expect
the optimal weights to fall within the (.25, .75)
interval. To do so would require the predictor-
criterion correlations to fall within an interval
much higher than (.25, .75), even when K and
the predictor intercorrelations are small.
Several examples of this are presented in
Table 2. Thus, although technically correct,
it serves little practical utility to assert that
the loss in explained variance will be diminished
for a given distribution of optimal weights
when R is different from I.

A more applicable approach to evaluating
the effect on loss as R departs from I would be
as follows: Assume that by orienting predictors
properly we can restrict attention to predictors
that will correlate positively with the criterion.
Then consider that any set of K positive pre-
dictor-criterion correlations can be associated
with one of many different possible sets of
intercorrelated predictors (where each dif-
ferent R leads to a different set of optimal
weights). The relevant question then is, for
a given set of predictor-criterion correlations,
can we generally expect either a consistent
increase or decrease in the loss of explained
variance as the R associated with the set is
allowed to depart from I? Even though it can

Table 2
Examples of Unrealistically High
Predictor-Criterion Correlations
When R 7* I for Weights Restricted
to the (.25, .75) Interval

Correlations

Optimal Predictor-
weights Interpredictor criterion

(5) (R) (R«)

'.25-

.SO

..75.

' 1

.2

..2

-,

1

.2 1.

'.5'

.7

..9.

r.25^

.42

.58

..75

' 1

.1 1

.1 .1 1

..1 .1 .1 1

-.43-

.58

.72

..88.

empirically be shown that the loss will quite
often increase, the answer to this question
must be no. The direction of change in loss
can vary and will depend primarily on the
pattern of both interpredictor and predictor-
criterion correlations.

It can be shown, however, that once some
pattern of correlation exists among predictors,
then the higher the correlations in the pattern,
the larger will be the loss in explained variance
when switching to equal coefficients. Support
for this is intuitively straightforward. As the
redundancy among predictors increases
(through higher predictor intercorrelations),
the K optimal weights change so as to minimize
the effects of the increased redundancy. Equal
weights, on the other hand, are independent of
the level of predictor intercorrelations and
thus suffer the full extent of any increased
redundancy. Hence, the multiple correlation
will always decrease less than the equal
weights validity as the predictor intercorrela-
tions get higher.

It should be clear that it is not at all obvious
or necessarily true that the loss in explained
variance will be considerably less when pre-
dictors are correlated. The situation is simply
more complex than Wainer suggests. More
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research is clearly needed to identify those
data structures that most appropriately lend
themselves to an equal weights model.

Concluding Remarks

As was indicated earlier, the practical im-
plications of Wainer's (1976) arguments are
quite strong. If the assertion is true that there
is no serious loss in accuracy incurred when
switching from optimal to equal weights and
it is coupled with the knowledge that equal
weighting schemes entail virtually no sampling
variability, then it would indeed be a rare
situation that called for differential weighting
coefficients. There would certainly be little
point in searching for improved methods of
estimating weighting coefficients, since equal
weighting schemes would allow no room for
improvement.

As detailed above, however, Wainer mis-
stated the loss to expect when equal rather
than optimal weights are employed. In many
situations the loss in explained variance can
in fact be regarded as serious or nonnegligible.
Even though this "almost no loss" assertion
can be rejected, it should still be recognized
that equal weighting coefficients can perform
remarkably well, particularly considering that
they require no data to derive. They are simply
not, however, the final solution to the problem
of estimating weighting coefficients in linear
prediction models, as Wainer seemed to sug-
gest. It may well be that other weighting
methods can be developed that will lead to
predictions that are stable and more optimally
valid. Indeed, this author has recently re-
ported (Laughlin, Note 3) on an alternative
method, which offers a Bayesian compromise
between sample least squares and equal weight-
ing coefficients, that has quite consistently led
to a more attractive prediction model.

In sum, the extreme stance supporting equal
weighting schemes that was taken by Wainer
is simply not warranted.
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Appendix

The purpose of this appendix is to justify
the relative loss measure presented in Equation
4.

It is well known (e.g., see Tatsuoka, 1971,
Chap. 3) that for standardized variables, the
squared multiple correlation can be obtained
by

(Al)
j-l

where r}-y is the jth predictor's correlation with
the criterion. In matrix terms, Equation Al
can be expressed as

Rf = (A2)

where K.xy is the X X I vector of predictor-
criterion correlations. The right-hand side of
Equation A2 is obtained by recognizing that
R^ = R&.

Next, note that any set of equal weights
will produce predictions that will correlate
the same with actual criterion scores. For
convenience, assume the equal weights are
unity. Then, following Tatsuoka (1971, chap.
5), it is possible to express the covariance be-
tween equal weight predictions and actual

criterion scores as

Cov (F, FE) = l'R*w = 1'Rff, (A3)

where the right hand side of Equation A3
again follows from RItf = R(J. Again following
Tatsuoka, we can determine that the standard
deviation of the equal weight predictions is

YS = (l'Rl)i. (A4)

Then, from Equations A3 and A4, and re-
membering that the variance of actual cri-
terion scores is assumed to be 1, we can write
the correlation between equal weight pre-
dictions and actual criterion scores as

Cov (7, FE) _ l'R0
(I'Rl)*

(AS)

Squaring Equation AS and substracting from
Equation A2 thus leads to the loss measure
expressed in Equation 4 above:

Loss = Rf -
~ * " (1'Rl)
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