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FUNGIBLE WEIGHTS IN MULTIPLE REGRESSION
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Every set of alternate weights (i.e., nonleast squares weights) in a multiple regression analysis with
three or more predictors is associated with an infinite class of weights. All members of a given class can

be deemed fungible because they yield identical SSE (sum of squared errors) and R? values. Equations for
generating fungible weights are reviewed and an example is given that illustrates how fungible weights
can be profitably used to evaluate parameter sensitivity in multiple regression.
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1. Introduction

Given a criterion variable, y, and a vector variate x of length p, least squares multiple
regression (MR) seeks the linear combination of x that minimizes the sum of squared errors
(SSE) and maximizes the correlation (ry3, ) between y and yp, where y = b'x (bisa p x 1 vector
of weights). When x is full-rank, the so-called least squares (LS) vector, b, is unique. Stated
otherwise, if J, denotes a linear combination of x using alternate weights a, @ # b (y, = a'x)
then, for any a, SSEp < SSE, and ry5, > ry3, in the sample from which b has been calculated
(Rencher, 2000, p. 238).

Although LS weights are optimal in the sense described above, it is well known that
other weights may perform nearly as well as LS weights in many data sets (Goldberger, 1968;
Green, 1977; Hoerl & Kennard, 1970; Koopman, 1988; Rozeboom, 1979; Tukey, 1948; Wilks,
1938). For instance, in small to moderate size samples, equal weights or simple validity coeffi-
cients (a = ryy) often work remarkably well with standardized predictors. Moreover, in cross-
validation samples, these so-called alternate weights frequently outperform LS weights (Dana
& Dawes, 2004; Dawes & Corrigan, 1974; Einhorn & Hogarth, 1975; Raju, Bilgic, Edwards,
& Fleer, 1997; Schmidt, 1971). Commenting on this point, Wainer once quipped that when es-
timating coefficients in linear models “it don’t make no never mind.” (1976, p. 213) Although
several researchers have taken issue with the generality of Wainer’s comment (for corrections
and extensions of Wainer’s thesis, see Grove, 2001; Keren & Newman, 1978; Laughlin, 1978;
Pruzek & Fredrick, 1978; Rozeboom, 1979; Wainer, 1978), one point is undeniable. In many
samples, alternate regression weights (e.g., equal weights, rounded weights, correlation weights)
perform surprisingly well.

Each set of alternate weights is associated with unique SSE, and R‘% values (where
RZ = ”yz-y,, ). Interestingly, however, in problems with three or more predictors, each pair of SSE,

and R,% values is associated with an infinite number of alternate weights. Indeed, a primary goal
of this paper is to demonstrate that every set of alternate weights in a multiple regression analysis
(with 3 or more predictors) is associated with an uncountably infinite class of weights. In the fol-
lowing, I describe the members of each such class as being fungible because they yield identical
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SSE, and R(% values (hereafter abbreviated as SSE and R?). In this article, I show how to generate
fungible weights for various R? values and how the examination of fungible weights can be an
informative component of a model sensitivity analysis. Finally, using data on the prediction of
graduate school performance (Kuncel, Hezlett, & Ones, 2001), I illustrate how fungible weights
can be used to gauge parameter sensitivity in multiple regression.

In the remainder of the paper, I adopt the following notation and conventions. I assume
that all variables have been standardized. Although many authors have argued against variable
standardization in MR (Achen, 1982; Bring, 1994; Darlington, 1990; Greenland, Schlesselman,
& Criqui, 1986; Kim & Ferree, 1981; King, 1986), social scientists often work with standard-
ized scores because their variables lack metrical meaning. Moreover, working with standardized
scores simplifies the mathematics of the paper without incurring a loss of generality (all results
can be easily expressed for nonstandardized scores). Finally, I adopt the notation of Abadir and
Magnus (2002) such that vectors are represented by bold-italic lowercase letters (b), matrices are
denoted by bold-italic uppercase letters (R), and scalars and random variables are denoted by
italic lower case letters (c¢).

2. Parameter Sensitivity in Multiple Regression

In multiple regression analysis, we can quantify parameter variability by computing (via
likelihood or bootstrap methods) the covariance matrix of the estimated regression coefficients
(Rencher, 2000, p. 135). This information is meaningful when the data conform to the assump-
tions of our inferential model (e.g., random sampling from a well-defined population). Alterna-
tively, in any sample, we can quantify parameter sensitivity by substituting nonoptimal (i.e., alter-
nate) weights into a regression equation (Green, 1977; Tate & Bryant, 1986) and then reexamin-
ing the model fit. Optimal (LS) weights are said to be insensitive when slightly different weights
produce similar fit indices (e.g., SSE and R? values). They are deemed sensitive when small
changes to the LS weights produce large changes in model fit. The topic of parameter sensitivity
in multiple regression has been skillfully addressed by many authors (e.g., Goldberger, 1968;
Green, 1977; Koopman, 1988; Rozeboom, 1979; Wilks, 1938). In the following paragraphs,
I summarize some important findings from these authors as a prelude to our discussion of fungi-
ble weights. Let us first formalize the problem.

Letx =[x, x2,...,X p]’ denote a vector valued set of predictors with correlation matrix R.
Then using previously defined terms (where b denotes the LS weights and a denotes a set of
alternate weights), linear composites of x can be defined as follows:

Yo =b'x,
Ya=a'x.

We can quantify the similarity of these composites by directly correlating their scores or by
using the following equation from the algebra of linear composites (see Green, 1977, p. 273;
Tatsuoka, 1971, Chap. 5),

a’'Rb
(@' Ra)'>('Rb)'*
Using (1) is preferable when we want to explore the similarities between weight vectors. For

instance, in an important paper on parameter sensitivity in multiple regression, Koopman (1988)
showed how consideration of (1) could be used to answer the following questions.

)

TSa3p =

1. Can a composite that is very similar to the original composite (produced from the LS weights)
be produced by weights that are very different from the original weights?
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2. Can a composite that is very different from the original composite be produced by weights
that are similar to the original weights?

To answer these questions, Koopman operationalized weight similarity as the cosine be-
tween vectors a and b in (1). He then showed how numerical methods could be used to locate a
vector a with either the maximum or minimum cosine with a given b under the constraint that
5.5, €quals a user defined value. Finally, using an empirical data set, Koopman convincingly
demonstrated—at least for his example—that similar composites could indeed be produced with
strikingly dissimilar weights. On the other hand, he also showed that very different composites
could not be produced with similar weights.

Koopman’s paper is important because, among other things, it demonstrates how to esti-
mate two weight vectors of particular interest from a class of fungible weights. Unfortunately,
few applied researchers have taken advantage of this work, perhaps because Koopman’s method
requires the numerical optimization of a seemingly complex equation. Whatever the reason, as
shown in the next section, less complex equations can be used to locate all weight vectors in a
fungible class of weights. To help researchers calculate these weights, the Appendix includes R
code (R Development Core Team, 2007) that will carry out the necessary calculations.

3. Calculating Fungible Weights

Our first task is to demonstrate that a set of fungible weights is populated by innumerable
weight vectors. To calculate these vectors, and to populate the set, let us consider how (1) can
be simplified into a more manageable form. Assume R, the correlation matrix of x, is full rank.
Then

R=VAV', 2

where V is a p x p (p > 3) matrix of orthonormal eigenvectors (such that V'V = VV’ = I') and
A is the associated p x p diagonal matrix of eigenvalues. By substituting (2) into the numerator
of (1), we find that b and @ can be mapped into unit length vectors u and k, where

A2y
U= 7Vb (3)
(b'Rb)!/2
and
A2v'q
=~ @Ra) @
such that
r5ass = k'u. (5)

Importantly, starting from (5), given any unit length vector u we can easily find an appropri-
ate, unit length vector k. Specifically, let

k=ru+Uz(1—r2)l/2, 6)

where r is shorthand for r5,5,, U is any p x (p — 1) orthonormal matrix such that U'U = I
and U'u =0, and z is a (p — 1) x 1 normalized random vector such that z’z = 1. Note that U
is easily constructed using the Gram—Schmidt method (for details see Carroll & Green, 1997,
p- 106). Under these conditions, it is easily shown that

Ku=r=(ru' +(1-r*)"?70")u. (7)
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Having a suitable k in hand, we are ready to find a. First, define
i=VA ' k. (8)

In (8), @ yields the appropriate correlation in (1), but it does not yield the minimum SSE of all
weight vectors that are collinear with @. To simultaneously minimize the SSE, we multiply @ by
a constant s (i.e., @ = s@), where
ri,a
=== 9
' T @R ©)

Now, after reexpressing s, we have shown that
a=(r, VA~ Pk)VA~' k. (10

At this point, it is useful to add subscripts to a, k, and z. Obviously, there is an infinite number
of vectors, z;, that can be plugged into (7). Thus, there is also an infinite number of vectors k;
in which klu = r5,5,. Each k; can be (nonlinearly) mapped into an a; by (10). Moreover, given
5,55 €ach a; so defined will satisfy

a;Rb
rs. v, — s
" () Ray)'*(b'Rb)'?
and
R, =ry5, =ajRa;. (11)

From previous definitions, it can be shown that the expected mean and covariance matrix of a
take on simple forms. Namely,

E(a) = r’b, (12)

and

Cov(a) =

1_ IR,E r*(1-r*)GG/, (13)
where G = VA™!/2U.

In the next section, we will see that a consideration of (11) will help us understand the
geometry of fungible weights. Before discussing this geometry, it is worth noting that the weight
vectors identified by Koopman (1988) as being of particular interest will be among the vectors
produced by (7) and (10) and can be found via methods that are described later.

4. The Geometry of Fungible Weights

One of the more interesting findings from the previous section was the discovery that the
correlation between two weighted, linear composites of x can be represented by the cosine (or
inner product) of two unit length vectors, k and u, as defined above. We also learned that there
are an infinite number of vectors k; (i =1,2,..., 00) such that r5,5, = k;u. Combining these
facts will help us to understand the geometry of fungible weights. To visualize this geometry, we
will consider an example in R3 (3-dimensional space).

Imagine a cone suspended in space (see Mulaik, 1972, pp. 328-329, for another example of
how a cone can represent the geometry of correlational indeterminancy). Further imagine that the
tip of the cone is located at O the origin of an R® Cartesian coordinate system. It may be helpful
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to think of a sugar cone (minus the ice cream). Now place a very thin straw into the center of the
cone, such that at the cone’s mouth, the straw is an equal distance from all sides of the cone. The
straw represents a (3 x 1) vector u and the walls of the cone represent the infinite k; as defined
by (6). Recall that by construction, all k; have identical cosines with u, and thus the straw is in
the precise center of the cone.

Now set aside the cone and visualize each k; as a point in space, rather than as a vector
(or directed line segment). From this perspective, the infinite collection of points, k;, will form
a circle. It is interesting to ask how this circle is transformed when k; is mapped into a;. To
understand this mapping, it necessary to review two properties of a; . First, when a; is constructed
by the methods reviewed above, then the quadratic form @ Ra; is constant. Specifically,

ry5. = @;Ra. (14)

From a geometrical perspective, (14) implies that @; must terminate on the surface of an ellipsoid
because R is a full rank, symmetric matrix and x’Ax = c¢| (where ¢ is a constant and A is a
positive definite, symmetric matrix) is the generalized equation for an ellipsoid.

A second property concerns a bilinear form. Namely,

¢ =a}Rb, (15)

where ¢ is constant. In general, bilinear forms such as (15) define hyperplanes. When a; and b
lie in R3, (15) defines a plane. Thus, by proving that ¢, is indeed a constant, we can prove that a;
lies at the intersection of a plane with an ellipsoid. In other words, we will prove that the circle
defined by k; maps into an ellipse defined by a; (because a plane intersecting with an ellipsoid
defines an ellipse, see Ferguson, 1979, for justification of this claim). A proof can be sketched as
follows.

By construction,

rys. = (@ Ra;)'?, (16)
ryvsy = (B'Rb)V/?, (17)
and
a.Rb
"Sa3b = (18)

(a;Ra;)'/*(b'Rb)'/*

Equations (16)—(18) imply

aRb
s, v, —
YaYb P
T'y5aTy3p
which obviously equals
o~ o~ —~ !
"5 Ty3a Ty5s = @; RD. (19)

‘We have shown that (19) is constant for any problem, and thus that the fungible weights of three
predictors will define an ellipse in R3. In higher dimensional problems, similar logic can be used
to demonstrate that fungible weights will lie on a (p — 1)-dimensional hyper ellipsoid in R?.
Notice that when R = I (i.e., the case of orthogonal predictors), @; will be collinear with
k; and b (and thus ry,) will be collinear with u. This implies that for a given class of fungible
weights, all a; will have identical cosines with b. Interestingly, it also implies that with orthog-
onal predictors there are an infinite number of solutions to Koopman’s equations for locating
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the a; that yields the maximum or minimum cosine with the LS weights (because cos £a; Ob is
constant for all 7).

Before leaving this section, let us consider how the aforementioned geometry might illumi-
nate the topic of parameter sensitivity. Our example will require us to return to the cone in R3.
Visualize two vectors, k; and k;, that lie on opposite sides of the cone. How far apart are the
vectors? By considering (7), we can infer that wide cones are produced by fungible vectors hav-
ing dissimilar corresponding coefficients whereas narrow cones are produced by vectors with
similar coefficients. This suggests that an informative measure of parameter sensitivity might be
cos £k;Okj, a value that is easily determined by recalling that the angle between k; and k; is
twice the angle between k; (or k;) and u. Thus, using the formula for the cosine of a double
angle (see Guttman, 1955, (44), for a similar application), we find that

cos £k;iOk;=2r%- —1. (20)

YaYb
Alternatively, as shown in the next section, this is equivalent to

2

V/Y\a

Ya _q 1)
2
"y

r

cos £k;Ok; =2

Later, we will consider additional ways in which fungible weights can be used to evaluate para-
meter sensitivity in regression coefficients.

Heretofore, we have formulated our problem from the perspective of (1). That is, we have
considered the generation of weights that yield a specific 5,5, under the constraint that the sum
of squared errors (when using the alternate weights) is minimal. Sometimes, we might wish to
formulate the problem from a slightly “different angle” (pun intended) and generate weights that
yield a specific ry5, under the constraint that ry3, < ry3,. As shown below, this is easily done
once we recognize the similarity of the two problems. To understand this similarity, recall that

CoVy3,

~ = . 22
"y¥a sdysds, (22)

Equation (22) can be simplified by recognizing that cov,s, equals covy,5, because e, the LS
residuals (where y =y + ¢), lies outside of the predictor space. Therefore, when x and y are

standardized,
_ _ "58dnsdy,
L T —
’ (Dsds,

which after making appropriate substitutions yields
"ySa = Ty55! 5530 23)

The three terms in (23) are known or are easily calculated; thus, it is a simple matter to generate
weights for either a specific ry3, or a specific r5,5,. (Note that (23) also implies that rfya =
a;Rb.) Let us see how this is done. '

Imagine that a researcher performs a LS regression and obtains an R? of 0.65. Further sup-
pose that she decides that any (appropriately scaled) weight vector that produces an R? of 0.64—
a reduction of only 1% predicted variance—is “good enough” from a predictive standpoint and
that some vectors satisfying this criterion might merit theoretical consideration (and evaluation
in cross-validation samples). How should our hypothetical researcher proceed?
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TABLE 1.
Six fungible weight vectors for the GRE data.

ap a) as
ay high 0.33 0.12 0.00
aj high 0.22 0.23 0.01
a3 high 0.16 0.07 0.23
ai low 0.13 0.14 0.19
ap low 0.24 0.03 0.17
a3 low 0.31 0.19 —0.04

To find the needed quantities for (23), let RI% denote the R? using the LS weights (b) and let
Ra2 denote the coefficient of determination using the alternate weights. Define 6 = Rg — RZ. In
the current example, 6 = 0.01. From (23), a little algebra reveals that

o \1/2
5.5 =\1— F . (24)
b

Previously described equations can now be used to generate the fungible weights. With the aid
of real data, we will consider a second example in greater detail.

5. Empirical Application: Are GRE Subtests “Worth Their Regression Weights?”

This example uses data from the Graduate Record Exam (GRE) as reported in Kuncel, He-
zlett, and Ones (2001). These authors combined data from 82,659 students to assess the useful-
ness of the GRE for predicting various measures of graduate school performance. Using data
from Tables 3 and 8 of their original report, we will consider the prediction of grade point aver-
age (GPA) for social science students. The following matrices report the correlations (R ) among
the verbal, quantitative, and analytic subtests of the GRE and the correlations (ry ) between the
GRE subtests and GPA.

1.00 0.56 0.77 0.39
R, =1056 1.00 073 ], ryy=1034
0.77 0.73 1.00 0.38

The standardized regression weights for these data equal b = (0.24, 0.14, 0.10) producing a
model R? = 0.176. Although these weights are relatively similar, for illustrative purposes, we can
imagine that an enthusiastic admissions officer uses these findings to place greater emphasis on
the GRE verbal score when selecting social science students. Given the extremely large sample
size of this example, the variances of the estimated regression coefficients will be exceedingly
small. In other words, parameter variability is small. But what about parameter sensitivity? To
investigate this alternative measure of precision, we can compute and evaluate various sets of
fungible weights.

Using the data reported above and the computer code that is reported in the Appendix, I gen-
erated 20,000 samples of fungible weights for the set R> = 0.171. Notice that this value is a mere
half a percentage point lower than the Rl% obtained from the optimal (LS) weights.

In Table 1 are six weight vectors from this analysis which were selected from the larger
collection of 20,000 fungible vectors because they include the highest and lowest values for each
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FIGURE 1.

Scatterplot matrix of fungible weights.

coefficient. Scanning this table makes it immediately clear that the rankings of the LS weights
are poor indicators of variable importance, since an exceedingly small reduction in predicted
variance is consistent with many weight vectors that have different coefficient ranks and quite
different coefficient magnitudes.

‘We can also gauge parameter sensitivity by examining univariate and bivariate plots of the
fungible weights. To illustrate this idea, Fig. 1 displays smoothed density plots and scatter plots
for the 20,000 weight vectors of the GRE example. Several aspects of this figure warrant dis-
cussion. For instance, notice that in the diagonal cells the density plots show marked bimodality.
This indicates that the alternate weights typically receive either a high or low value within their
distributions. The scatter plots demonstrate that whether a coefficient receives an extreme value
is a tightly constrained function of the remaining coefficients. This is shown by the plots (with
superimposed LS regression lines) looking more like ellipses than point clouds with associated
variation. These plots contain the actual raw data of the fungible weights.
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Three classes of fungible weights for the example problem.

Finally, in examples with three predictors, we can plot the fungible weights in R3. This idea
is illustrated in Fig. 2, which displays fungible weights for three separate classes of weights. The
three classes (or sets) have different R? values. The smallest ellipse includes weights that yield
an Rg that is 0.5% lower than the LS RI%, whereas the largest ellipse includes weights that yield
an Rﬁ that is 2% lower than the LS R,%. In higher dimensional problems, it may be instructive to
create similar plots with predictor subsets.

6. Discussion

Numerous researchers have reminded us that coefficient size is an unreliable index of para-
meter importance in multiple regression (e.g., Budescu, 1993; Darlington, 1968; Green, Carroll,
& DeSarbo, 1978; Gromping, 2007; Johnson, 2000). Yet, in applied settings, regression coef-
ficients are still often ascribed undue importance. One reason why this practice is problematic
concerns the performance of alternate weights. Alternate weights, such as unit weights, rounded
weights, or simple validity correlations can be very dissimilar from the optimal LS weights
yet still perform remarkably well in calibration samples. Moreover, these so-called nonoptimal
weights may actually outperform LS weights under cross-validation. These facts have led some
researchers to proclaim that “it don’t make no never mind” when estimating coefficients in linear
models.

In this article, we have seen that every set of alternate weights (with 3 or more predictors)
is associated with an uncountably infinite class of weights. All members of a given class yield
identical SSE and R? values and are, therefore, deemed fungible. Because fungible weights are
easily calculated, they offer a convenient means for evaluating parameter sensitivity in multiple
regression and recursive path analysis models. In other words, fungible weights can help you
decide whether, in fact, “it do or don’t make no never mind.”
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Appendix: R Code for Fungible Weights

## R function: Fungible

## Author: Niels Waller

## March 11, 2008

##

## Input Variables

## R.X p X p Predictor variable correlation matrix.
## rxy p x 1 Vector of predictor-criterion correlations.
## r.yhata.yhatb = correlation between least squares (yhatb)
## and alternate-weight (vhata) composites.
## sets Number of returned sets of fungible weights.
## print logical, if TRUE then print 5-point summaries
## of alternative weights

##

## Output Variables

## a sets x p matrix of fungible weights

## k sets x p matrix of k weights

## b p X 1 vector of LS weights

## u p x 1 vector of u weights

## r.yhata.yhatb correlation between yhata and yhatb
## r.y.yhatb correlation between y and yhatb

## cov.a Expected covariance matrix for a

## cor.a Expected correlation matrix for a

Fungible <- function(R.X, rxy,r.vhata.yhatb, sets=20,print=TRUE) {

GenU <- function(mat,u) {
## Generate U matrix via Gram Schmidt
p <- ncol (mat)
n <- nrow(mat)
oData <-matrix(0,n,p+1)
obatal[,1l]l<-u

for(i in 2: (p+1)){
oDatal[,i] <- resid(lm(mat[, (i-1)]~-1+oDatal,1:(i-1)1))

U<-oDatal,2: (p+1)]
d <- diag(l/sqgrt(diag(crossprod(U))))
U <- U%*%d
U
}#end GenU

NX <- ncol(R.X)
a.matrix <- k.matrix <- matrix (0, sets,NX)

#OLS weights
b <- crossprod(solve (R.X), rxy)
r <- as.numeric(r.yvhata.yhatb)

VLV <- eigen(R.X)
V <- VLVS$vectors
L <- diag(VLVsSvalues)
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Linv.sqgrt <- solve( sqgrt(L))
u.star <- t(V)%*%b

u.circle <- sqgrt(L) %*% u.star
u <- u.circle/ as.numeric (sgrt((t(u.circle) %*% u.circle)))

r.y.yhatb <- sagrt( (t(b) %*% R.X %*%b) )

mat <- matrix(rnorm (NX* (NX-1)),6NX,NX-1)
U <- GenU(mat,u)

for(i in l:sets){

z <- rnorm( (NX-1))
z <- z / as.numeric( sgrt( t(z) %*% z))

k<-r *u+ +U %*% z * saqrt(1-r"2)
k.star <- Linv.sqgrt%*%k
a <- V %*% k.star

# scale a to minimize SSE_a
s <- (t(rxy) %*% a)/(t(a)%*3R.X%$*%a)

a <- as.numeric(s) * a

if (i==1) {
cat ("\n\nGenerating alternate weights . . . \n")
r.yhata.vhatb <- (t(a) %*% R.X %$*%b)/( sqgrt((t(a)%*3R.X%*%a))*
sagrt (t (b)3*%$R.X%*%Db) )

a.matrix[i,] <-a
k.matrix[i,] <- k

}

cat ("\n\n")

cat (" r.yhata.yhatb = ",r.vhata.yhatb, "\n")

cat (" RSQb = ",round(r.y.vhatb”2,3),"\n")

cat (" RSQa = ",round((r.yhata.yhatb * r.y.yhatb)”2,3),"\n")

cat (" Relative loss RSQb - RSQa = ",

round( r.y.yhatb”2-(r.yhata.yhatb * r.y.yhatb)"2 ,3),"\n")
cat (" OLS b = ",t(round(b,3)), "\n\n")

cat ("\n")

colnames (a.matrix) <- paste("a",1l:NX,sep="")

if (print) {

cat ("\nSummary of generated alternate weights\n")
print( apply(a.matrix, 2, summary) )

cat ("\n")

}

# Compute Expected Moments
G <- V%*%Linv.sqrt%*3U
esqg <- (1-r"2)

# Expected a
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mn.a <- r*"2 * b

cat ("\n Expected a \n")
print (mn.a)

Ezsqg <- 1/ (NX-1)

# Expected covariance matrix
cov.a <- as.numeric(r”2 * r.y.yvhatb”2)* Ezsqg * esqg * G %$*%3t (G)

cat ("\nExpected Covariance Matrix \n")
print (cov.a)

Dmat <- diag(l/sgrt(diag(cov.a)))

cor.a <- Dmat %*% cov.a %*% Dmat

cat ("\nExpected Correlation Matrix \n")
print (cor.a)

list(a = a.matrix ,

k = k.matrix,

b = Db,

u = u,
r.vhata.vhatb=r.yhata.yhatb,
r.y.vhatb=r.y.vhatb,
cov.a=cov.a,

cor.a=cor.a)

} ## End of Fungible

## EXAMPLE
## GRE/GPA Data

R.X <- matrix(c(1.00, .56, .77,
.56, 1.00, .73,
.77, .73, 1.00),3,3)
rxy <- c(.39, .34, .38)
b <- solve(R.X)S$*$rxy
theta <- .01
OLSRSQ <- t(b)%*%R.X%*%b

r.yvhata.yvhatb <- sgrt( 1 - (theta)/OLSRSQ)

Nsets <- 5000

output <- Fungible(R.X, rxy, r.vhata.yhatb, sets=Nsets, print=TRUE)
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