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The problem of how to weight several predictors of a criterion in a linear
model is discussed. It is argued that the recently recommended practice of
replacing least squares weights (8,5) with equal or simplified weights of stan-
dardized predictors will frequently result in serious, systematic errors of pre-
diction. In particular, Wainer’s equal weights theorem is shown to have little
relevance to a wide range of prediction problems because, contrary to his
claims, his assumptions are highly restrictive.

A comprehensive algebraic system is described that makes explicit the inter-
dependence between least squares regression coefficients and the set of correla-
tions between all pairs of predictors as well as between each predictor and
the criterion. Alternative sample-based estimators of population B; values are
discussed. It is argued that certain alternative f; estimators can be expected
to work particularly well when sample sizes are small and when predictor vari-
ables have substantial intercorrelations with one another. A general strategy is
proposed for conducting applied prediction studies to take into account one’s
prior beliefs or knowledge about covariances or correlations in the joint

predictor-criterion system.

A number of articles have recently ap-
peared that have compared different weighting
schemes for linear prediction models (Dawes
& Corrigan, 1974; Einhorn & Hogarth, 1975;
Schmidt, 1971). Interestingly, and perhaps
surprisingly, all of these authors have found
that simplified weighting of standardized pre-
dictors may be as good as or even superior to
least squares weighting under rather general
conditions.

Wainer (1976) has recently offered a further
analysis of this problem that is of particular
interest, since his arguments were mathemati-
cal and his conclusions very general. He con-
cluded that “when you are interested solely in
prediction, it is a very rare situation that calls
for regression weights which are unequal” (p.
216). In particular, Wainer provided a theorem
that shows that under certain conditions,
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which he clearly believes to be unrestrictive,
the coefficients in multiple regression models
can be replaced with equal weights with small
loss in predictive accuracy.

In this article we show that the equal weights
theorem has little relevance to a wide range of
prediction problems because, despite Wainer’s
arguments, his assumptions are highly re-
strictive. Moreover, of those authors who have
previously written about this topic, none have
clearly indicated when unit weights are apt
to work poorly or what alternatives other than
equal (or simplified) weights may be appro-
priate when sample least squares prediction is
apt to be undesirable. Because multiple pre-
dictor studies are so often used in the be-
havioral sciences, it seems important to be as
clear as possible about such matters.

The aim of this article is not only to qualify
previous authors’ conclusions regarding simpli-
fied weighting schemes. Newly developed cor-
respondences between common factor analysis
and least squares regression are discussed that
make explicit the interdependence between 8;
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weights and joint predictor—criterion correla-
tions or covariances. Using these theoretical
findings, it is shown that alternatives to ordi-
nary least squares regression estimators can be
constructed that will frequently yield greater
precision of future predictions than will ordi-
nary least squares ; estimators. Finally, a
general strategy is suggested for designing and
conducting applied prediction studies, a strat-
egy that seems to be in harmony with a general
Bayesian viewpoint about statistical inference.
This strategy involves prespecification of be-
liefs about structural (correlational) relation-
ships in the joint predictor—criterion system at
the time when a study is being planned and/or
before an analysis has been started.

Wainer’s equal weights theorem begins with
the assumptions that all predictors are mutu-
ally uncorrelated (not just linearly indepen-
dent) and that population (standardized)
regression coefficients are uniformly distributed
in the interval (.25, .75).! With these restric-
tions Wainer argued that if equal weights are
used for & standardized predictors instead of
least squares weights, the expected loss in
criterion variance is k/96. The author also
concluded that if the predictors are positively
correlated with one another, the expected loss
in predictive accuracy will be even smaller, as
long as the (standardized) regression weights
are positive and uniformly distributed over an
interval with a range of .5. In the next two
sections we question the propriety of each of
Wainer’s assumptions as well as the appro-
priateness of his general conclusions.

Limitations Imposed by Assuming Predictors
To Be Uncorrelated

Wainer assumed in his proof of the equal
weights theorem that all predictors are mutu-
ally orthogonal to one another, that is, uncor-
related. If R, represents the matrix of predictor
intercorrelations, this means that R, = I, an
identity matrix. Wainer believed that this as-
sumption is unimportant, however, since he
stated that the expected loss in accuracy of
prediction is less than £/96 if predictors are all
positively correlated. Nevertheless we argue
below that the theorem is unlikely to be mean-
ingful except when R, approximates an iden-
tity matrix, so that this case is important to
distinguish from the more general case of cor-
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related predictors. It is particularly useful to
recognize that if R, = Ifor the predictor inter-
correlations, then severe limits are placed on
the number of predictor variables, k, which
may be observed.

It is easily demonstrated that when least
squares regression is carried out using mutually
uncorrelated predictors, then standardized
least squares regression coefficients are identi-
cal to the individual predictor-criterion corre-
lation coefficients, that is, p,; = 8;. Further,
squared multiple correlations (SMCs) can
always be computed as the sum of squares of
these squared coefficients:

SMC = 0,8 = 2.6/

k
Because SMC = Y p,* < 1.00, the average
i=1
of k squared predictor—criterion correlation
coefficients cannot exceed the fraction 1/k.

In the case of Wainer’s assumption for p,;s
(or B;s) that all “sample” values are within
the interval (.25, .75), it is clear that the
maximum number of predictors that may be
accommodated in a single sample is £=1/(.25)?
= 16, in the wholly improbable event that all
py; values are exactly ,25. If & predictors are
selected using the interval (.25, .75) for 8; so
that the average of % values is .50, then the
maximum % occurs for all p,; = .50. In this
case, & drops to 1/(.50)% = 4, But if the sample
py;8 vary around .5, as it is most reasonable to
expect in the context of this theorem, then
£ < 3. Walner’s statement that it “is no real
restriction” (p. 215) to assume that 8; values
are in the restricted interval (.25, .75) is simply
not credible.

If the interval for §; values is permitted to
go to (.0, .5) (see Footnote 1) then it will
generally be possible to have more orthogonal
predictors. But even in this case %2 cannot
routinely be expected to be large. If all
“sample” B; values varied uniformly around
the midpoint of this interval, .25, then through
use of the relationship Variance = (Range)?/12
for a uniform distribution (cf. Hays, 1973, p.

! Although Wainer (1976) used the specific interval
(.25, .75), it was clear from his discussion and proof
that the range of coefficients is actually restricted only
to the range (a, o+ .5) for 0 < a <.5 (see also
Wainer & Thissen, 1976).
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247), it can be shown that £ will equal 12. In
practice, under Wainer’s orthogonality as-
sumption, it would be unreasonable to expect
k to be much larger than 12, even if his least
restrictive interval is assumed.

Given the restricted interval for §8; values,
these limits on the number of orthogonal
predictors, &, are absolute; they hold for any
empirically obtained numbers, not just ‘‘sam-
ples,” in the sense in which Wainer used that
term. As valid predictors are added beyond
the above limits, they must be correlated with
previous ones. Yet as soon as predictor varia-
bles become mutually correlated with one
another, the 8; values cannot be assumed to
be distributed independently of one another;
their interdependencies are directly related to
the configurations of correlations in the joint
predictor—criterion matrix for any given popu-
lation, We examine this point in more detail
below.

Limitations Imposed by Assuming a Uniform
Distribution of Regression Coefficients

The key assumption for Wainer’s equal
weights theorem is that 8; values are taken to
be uniformly distributed across a restricted
interval, specified in Wainer (1976) as (.25, .75).
The theorem requires, in effect, that actual
8;s be thought of as randomly sampled from a
uniformly distributed population of potential
B;s, defined such that all predictor intercorrela-
tions are fixed at zero for each sample. This
assumption seems to have little precedent in
statistical literature, and indeed, most of what
may initially appear as an elegant simplicity
about this theorem is owed to this uniformity
assumption. However, uniformity is generally
highly restrictive for either orthogonal or non-
orthogonal predictor systems, thus making the
entire theorem empty of broad implications for
practice,

As one begins to examine the uniformity
assumption, a particularly curious finding is
that the expected range of k ‘“‘sample” g;
values is a simple function of %, namely, E
(Range) = (Interval width) [(k — 1)/(k + 1)]
(cf. Keeping, 1962, p. 203). If the interval
width is .5, as is assumed for the equal weights
theorem, then for & = 2, E(Range) = .167;
for k = 3,itis .25, and for £ = §, the expected
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range of B; values is .333. Only when £ grows
large does the expected sample range begin to
approach its theoretical limit of .5. Thus, if
predictors were mutually uncorrelated so that
k must be small and the 8,5 were uniformly
distributed over an interval of width .5, then
Wainer is in effect assuming that the “sample”
8; values are very homogeneous. It should be
no surprise that the expected loss in accuracy
of prediction is small under the assumption
that relatively homogeneous weights are to be
replaced with equal weights!

As the number of predictors is increased,
we have already noted that predictors will
generally have to be mutually intercorrelated.
Moreover, the equal weights theorem itself
says that the loss in predictive accuracy from
replacing true 8; weights with equal weights
grows linearly with increases in .

A further point is that when predictor vari-
ables are permitted to be intercorrelated, then
the 8; values are not restricted in principle to
the interval (—1.00, 1.00), as is true for un-
correlated predictors. With correlated predic-
tors, standardized regression coefficients have
a theoretical maximum range of infinity, so
that a .5 range restriction may be described as
infinitesimal in relation to the possible range
of 8; values.

The major reason why it is difficult to
generalize from the equal weights theorem is
that the model on which it is based is defined
on a space of 8; values that cannot in general
exist, If real data, with correlated predictors,
are used to generate 8; values (for either sta-
tistical samples or populations) then the spe-
cific interdependence among these 8;5 must
generally be taken into account before one can
know how well equal weights will work in
relation to idealized weights. In particular,
when there are correlations of different sizes
among the various pairs of predictors and the
criterion, then §; values will tend to have sub-
stantially greater variance than will the pre-
dictor-criterion correlations. If predictor inter-
correlations are heterogeneous, then bimodality,
or tendencies toward U-shaped distributions
of B;s, will be common, Thus, to assume uni-
formity for £ 8; values is to make a strong as-
sumption, one that, for many practical predic-
tion problems with correlated predictors, is
unlikely to be met.
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One should not in general be optimistic about
the predictive usefulness of equal weights, at
least not on the basis of Wainer’s theorem or
arguments. We provide more concrete evidence
on this point in the next section.

The reader may now recall that Wainer was
not the first, nor were his arguments the only
ones that led to the conclusion that equal
weights in place of 8; values would often be
more than satisfactory. Indeed there are situa-
tions in which it may be advantageous to use
equal weights or, more generally, simplified
weights (—1, 0, and 1) in sample prediction
problems. In the following section we examine
a comprehensive algebraic system that makes
explicit the interdependence between joint pre-
dictor—criterion correlations and least squares
regression coefficients. Through applications of
certain principles that are based on some
recently developed correspondences between
common factor analysis and regression analysis,
it will be possible not only to see when simpli-
fied weights may be effective but also to
develop alternatives to sample least squares
regression that may often be expected to be
superior to both simplified and least squares
weights.

Some Relationships Between Least Squares
Regression and Common Factor Analysis

A recent synthesis of factor analytic and
regression algebra serves to illuminate several
general characteristics of various regression
systems for those typical situations in which a
complex of several random independent vari-
ables is used to predict one or more criterion
variables. Lawley and Maxwell (1973) devel-
oped most of the basic relationships between
factor analysis and regression, although certain
unpublished papers provide useful supple-
ments. {See Browne, Note 1; Pruzek, Walker,
Frederick, Huba, & Sherry, Note 2; Scott,
Note 3.) Our aim in this section is to highlight
certain principles that result from the recent
synthesis and to use these principles to identify
situations in which either least squares pro-
cedures or unit weights can and cannot be
expected to work well.

We focus first on common factor analyses of
correlation matrices for joint predictor—cri-
terion systems, where it will be assumed that
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the related regression equations are in stan-
dardized metric. Using correlational metric does
not reduce the generality of the results, because
the factoring methods to which we refer are
properly described as ‘“‘scale free”’—meaning
that analyses of correlation and arbitrarily
scaled covariance matrices are systematically
related to one another through a diagonal
scaling matrix. We examine what happens in
terms of interpredictability of variables in a
single battery or complex, starting from proto-
typical common factor coefficients that can
always be used to produce off-diagonals of any
empirically obtainable correlation matrix,

Consider the joint matrix R of predictor-
criterion correlations of order p X p, with
p=~k+ 1. Suppose that R satisfies the
common factor model for m factors, so that
R — U? = FF’, where U? is the (diagonal)
matrix of uniqueness variances, and F = {a;,}
is a p X m matrix of common factor coeffi-
cients. Further, let a, be any column vector in
F. This model will necessarily hold for some
value of m < p — 1, although U? may not be
uniquely defined for some R matrices, particu-
larly if m is large (see Lawley & Maxwell,
1971).

The least squares regression coefficients for
predicting each variable from the others can
be shown to be wholly determined by the
common factor coefficients. If there is only
m = 1 common factor, so that F = a;, and if
B represents the p X # matrix with zero di-
agonals whose nonzero column entries are the

= (p — 1) least squares regression coeffi-
cients for predicting each variable from all
others, then B = U—2a;a’ U-2D, + D, where
Dy and D, are appropriately chosen diagonal
matrices, Dj scales columns of U~2a;a’; U2, and
D merely consists of the negatives of the
diagonals of U—?a;a’,U~?D;, so that diagonals
of B are zero (see Lawley & Maxwell, 1973).

Whenever the number of factors, m, equals
unity, the off-diagonals of the Rank 1 product
U—2a,a’, U~ are proportional in any column to
the standardized least squares regression coeffi-
cients for predicting one variable from the
remaining p — 1 others. More simply, for any
criterion variable j,, the ;s for the predictors
will necessarily be proportional to the quotients
djl/(l —_ aﬂz) if m = 1, ] #= jc.

The above facts lead to some especially
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Table 1

ROBERT M. PRUZEK AND BRUCE C. FREDERICK

Regression Parameters for Two Hypothetical One-Factor Populations

Variance accounted

fors
Least squares regression coefficients
Factor Method
loadings Predictor
Least Equal
Variable Factor 1 1 2 3 4 5 6 squares weights
Population A
1 98 .39 24 A7 13 A1 .92 91
2 95 .59 14 .10 .08 .06 .88 .86
3 .92 .52 21 .09 .07 .06 .83 81
4 .89 49 .19 12 .06 .05 .78 .76
5 .86 .46 .18 A1 .08 .05 .72 Vil
6 .83 44 17 11 .08 .06 .67 .67
Population B
1 .98 .55 .39 .04 .03 .03 .90 77
2 95 72 .20 .02 .02 .01 .88 73
3 93 .65 .26 .02 .02 .01 .84 .70
4 .50 .30 12 .08 .01 .01 .24 22
5 45 .27 A1 .08 .01 .01 .20 18
6 40 24 09 07 01 01 16 A4

Note. Each row under the heading “Least squares regression coefficients’ contains the standardized weights
B; for predicting one of the six variables from the # — 1 = 5 others, that is, each is a row vector of the

matrix B’ (not B).

» Computed as the square of the correlation between the variable chosen as the criterion and a weighted

composite of the p — 1 = 5 others.

straightforward generalizations about the pre-
dictability of any single variable from several
others, If p is moderate to large, then the
equally weighted composite of all variables,
the first centroid of R, will typically be similar
to any one of the equally weighted composites
of (p — 1) standardized variables. Moreover,
as p is increased, the first centroid of R is
known to converge toward the (first) common
factor of R — U2 The larger the value of p,
the closer the correspondences. When the least
squares regression coefficients for predicting
any variable from all others can be reproduced
from a single common factor and the (p — 1)
order equal weights composites are all very
similar to this common factor, then equal
weights will be virtually as good as f3; weights.
This result corresponds almost directly to that
of Wilks (1938).

Even if all correlations are positive, p is
moderate to large, and a single factor can
exactly reproduce R — U2 it does not, how-
ever, necessarily follow that all the (p — 1)

order equal weights composites are very similar
to this common factor. Differences between
equal weights composites and least squares
composites can be substantial if the coefficients
in a, are sufficiently heterogeneous. Thus,
equally weighted composites of (p — 1) vari-
ables will not necessarily be as good as ideally
weighted composites based on 8; weights. The
first two hypothetical examples that follow
should clarify this distinction.

In Table 1, structural configurations among
two sets of six variables are specified using
two vectors of common factor coefficients. In
the case of Population A, the various a; values
are quite homogeneous. The reader may wish
to verify in this example that for any criterion
variable, the five 8; weights are proportional
to the quotients a;1/ (1 — a;,%). For this popu-
lation system, even with a relatively small
number of variables, replacing least squares
weights with equal weights can be seen from
the final two columns to result in small loss in
predictive accuracy, regardless of which vari-
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able is chosen as the criterion. Note that this
is true despite the fact that for each criterion
in Population A, the 8; values vary substan-
tially among themselves. Most practical prob-
lems in which the single-factor model is rele-
vant will involve ¢;8 which, like these, do not
vary greatly among themselves.

Even for the relatively simple case where
m = 1, it is possible in principle for equally
weighted composites to result in substantial
loss of predictive accuracy? in relation to least
squares composites. If, for example, the aj
values for a given set of variables range from,
say, .2 or .3 up to .85 or .93, then it is easy to
show that least squares regression coefficients
for at least some of the variables can produce
composites that are quite different from equally
weighted composites. The ;s for hypothetical
Population B (Table 1) have accordingly been
chosen to be quite heterogeneous. For this
hypothetical population system one could
incur substantial loss by adopting equal
weighting, depending on which variable one
was interested in predicting. Indeed, the loss
would almost surely be intolerable were vari-
ables such as 1, 2, or 3 to be selected as criteria.
On the other hand, if Variables 4, 5, or 6 were
defined as criteria, then one would be willing
to sacrifice the small luxury of least squares
weights for the convenience of equal weights,

If, however, equal weights for the predictors
are apt to lead to unacceptable loss in predic-
tive accuracy in relation to 8;s, this does not
necessarily mean that one must resort to
sample least squares in empirical work, In
practice one may be willing to assume that a
single common factor model was appropriate
for the joint predictor—criterion R, yet be un-
able to specify a; values for this system. In
such a case the a;; values can be estimated by
any one of several possible methods, including
centroid factoring. If m = 1, and especially if
2 is substantial, the a;; estimators, a;,*, can
be expected to be very stable across indepen-
dent random samples. Thus, if 8;* values are
determined (up to a constant of proportional-
ity) as g;14*/ (1 — a;1*?) then these reduced rank
B;* estimators of the population least squares
weights may be expected to be systematically
superior to sample least squares weights for a
given sample size #. (Because the correlation
between a criterion and a composite is the
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same as the correlation between a criterion
and a constant multiple of the composite, it is
always possible to compute the constant of
proportionality once relative weights for pre-
dictors are available.)

If it cannot be assumed that # = 1 for the
joint predictor—criterion matrix R, then a more
general system is required for relating factor
coefficients to regression coefficients. Suppose
again that R satisfies the common factor model
for m factors so that R — U? = FF’ for F of
order p X m. Then consider U'RU-! — 1
= Q,(D\* — D)nQ’s, where Q. consists of
m unit length column eigenvectors and D,?
is the diagonal matrix of m corresponding
eigenvalues of U-'RU-!. Communalities may
be defined as nonzero entries in I — U2,

In this notation, and where S?= (diag R1)-,
it can be shown that (cf. Pruzek et al., Note 2)

B= (- SU~
+ UQ.(I— D\?).Q, U8 (1)

or, by moving the diagonal matrix (I — S2U-2)
to the left side,

B4 S0z -1
= U—lom(l - DA—2>MQ’mU"—IS2.

In words, this expression means that all
the off-diagonal entries in B, the p sets of
(p — 1) B; coefficients, can be reproduced from
a matrix of Rank m. The matrix members
of this B are just the constituent parts of the
maximum likelihood common factor matrix
F = UQ.(Dx — I),} which is defined such
that FF' = R — U (cf. Lawley & Maxwell,

2 Most advocates of simplified weighting schemes
have taken the SMC as their index of predictive
accuracy. It may at times be more meaningful, how-
ever, to assess predictive accuracy in terms of the
standard error of estimate or its chief determinant, the
coeflicient of alienation, K = (1 — SMC)} K is directly
interpretable as the standard deviation of standardized
criterion scores around the regression surface (or hyper-
plane) of best fit. If ¢ denotes the reduction in SMC
due to the use of other than least squares weights for
prediction, and ¢* denotes the corresponding increase
in K, the reader may easily verify that relative to ¢*/K
(the proportionate increase in the coefficient of aliena-
tion), ¢ or ¢/SMC understates the loss in predictive ac-
curacy whenever SMC is larger than approximately
.5. Moreover, as SMC gets closer and closer to unity,
the extent to which ¢ understates predictive imprecision
grows rapidly more extreme.
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1971). This says that any matrix B of all the
least squares regression coefficients is wholly
reproducible from a matrix that is a row-and-
column rescaling of the matrix Q. of eigen-
vectors of UTR UL, Relatively few parameters
will be associated with B when m is much
smaller than p. This suggests that effective
reduced-rank sample estimators may be defined
to replace conventional sample least squares
estimators whenever there exists a U? for the
population R such that R — U? has a rela-
tively small rank. Note that as distinguished
from common factor analysis, conventional
forms of principal component analysis are not
particularly useful in developing relations be-
tween regression systems and structural covari-
ance methods. Also, it should be made explicit
that the methods under consideration here are
quite different from so-called principal com-
ponent regression methods, as discussed, for
example, by Herzberg (1969).

Two hypothetical population systems for
which m = 2 are given in Table 2, The F for

Table 2

ROBERT M. PRUZEK AND BRUCE C. FREDERICK

Population C is written so that all off-diagonal
values in the corresponding correlation matrix
are equal to a constant, .40, except for the
correlations pj2 = p1z = pg3 = .65. The first
eigenvalue (3.27) of the matrix R in this ex-
ample is nearly four times as large as the
second (.836). Yet despite this fact and the
reasonably homogeneous communalities, it is
clear from the final two columns of squared
validities that a rather substantial loss in pre-
dictive accuracy results from the use of equal
weights instead of the distinctive 8; values
when Variables 1, 2, and 3 are designated as
criteria. However, if the equally weighted
composite of, say, only Variables 2 and 3 were
used to predict Variable 1, then the squared
validity for this simplified composite drops
only to .518 from .536, the corresponding SMC.
Thus a simplified composite based on two
predictors is more valid here than one based
on four predictors. For Criteria 4, 5, and 6,
omnibus equal weights are practically as good
as least squares weights, despite the differences

Regression Parameters for Two Hypothetical Two- Factor Populations

Variance accounted

Factor fors
loadings Least squares regression coefficients
Method
Variable Factor Predictor
Least Equal
1 2 1 2 4 5 6 squares weights
Population C
1 73 .35 .35 .35 .07 .07 .07 .54 47
2 73 .35 .35 .35 .07 .07 .07 .54 47
3 73 .35 .35 .35 .07 .07 .07 .54 47
4 27 .57 .10 .10 10 .20 .20 .28 27
5 .27 .57 .10 10 .10 .20 .20 .28 .27
6 27 57 .10 .10 .10 .20 .20 .28 .27
Population D

1 .90 .00 45 .32 18 —~.16 —.08 .63 .30
2 .80 .00 .55 .18 .10 —.09 —.04 .55 .26
3 .70 .50 .31 15 .39 .16 .08 .64 .59
4 .60 .60 .20 .09 43 .23 A1 .60 .56
5 .00 .70 .29 —.14 -.30 .38 .16 .32 .09
6 .00 .50 -7 —.08 A7 .22 19 18 06

Note. Each row under the heading “‘Least squares regression coefficients” contains the standardized weights
B; for predicting one of the six variables from the p — 1 = 5 others, that is, each is a row vector of the

matrix B’ (not B).

* Computed as the square of the correlation between the variable chosen as the criterion and a weighted

composite of the p — 1 = 5 others.
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among the 8;s. Knowledge of the particular
clustering among these variables is in any case
at least moderately effective in reducing pre-
dictive inaccuracy. And the generalization
follows that knowledge of distinctive clustering
within any joint predictor-criterion matrix
may be of special value in knowing whether to
use ideal 8; weights, some particular simplified
weights, or perhaps other weighting schemes
for the predictors of any single criterion.
Brogden (1946) is a useful reference for show-
ing that a relatively small increase in a validity
coefficient may at times be of substantial
practical value.

For Population D, the factor coefficients
depict relatively more highly differentiated
structural relations. In this case it is clear that
the loss in accuracy associated with using
equal instead of least squares weights for
predicting all but Variables 3 and 4 is par-
ticularly great. In general it is true that sup-
pressor effects are most sharply defined when
there are at least two common factors for the
joint predictor—criterion matrix and where
columns depict uncorrelated clusters of vari-
ables and factorially complex variables, those
that load on two or more factors, Thus we see
that for multivariate populations characterized
by relatively distinct clustering of variables,
the loss in accuracy associated with equal
weights instead of 8;3 may indeed be substan-
tial. Moreover, to the extent that in a given
domain of prediction problems, factor matrices
like that of Population D are typical, then
substantial suppressor effects for at least some
variables may be very common, Indeed,
Schmidt’s (1971) survey of empirical correla-
tion matrices in four behavioral journals over
a 10-year period led to a finding of suppressor
effects in over 609 of the matrices examined.
For applied work it is of course an empirical
question as to whether small numbers of fac-
tors may be sufficient to account for all covari-
ation or whether factor structures are simple
or complex.

One might respond to all of this by saying
that simplified weighting of predictors may
still be appropriate; just use weights of 1, 0, or
—1 for the various predictors of any criterion
and forget about least squares weights. But if
this is to be done, the question is, How does
one decide which variables to weight 1, 0, and
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—1? Wainer suggested calculating sample
least squares weights and making the weight-
ing decisions on this basis. But such a practice
is highly problematic for several reasons. One
is that when predictors are even moderately
correlated, sample least squares estimators of
B;s may be highly unreliable unless # is very
large. Moreover, as these examples indicate, it
could sometimes be difficult to know if equal
or simplified weighting is apt to be effective,
even if population 8;s were themselves known.
Some of the unfortunate characteristics of the
sample least squares weights that led Wainer
to suggest that they be replaced with simple
weights are the very characteristics that make
these B; estimators inadequate for choosing
simple weights.

The important point to emphasize is that
just because sample least squares weights are
unstable does not mean that all sample-based
estimators of population 8;s are unsatisfactory.
It has already been shown how 3; values may
be estimated from common factor coefficients
if m =1, and from the preceding algebra it
should be clear that analogous B; estimators
can be simply derived even when m > 1, In
the next section we discuss some sample-based
alternatives to least squares regression esti-
mators and consider their potential role in
applied prediction studies.

Alternative Regression Estimators for
Empirical Studies

It has been noted that when there exists a
population correlation matrix R and a diagonal
matrix U? such that R — U? has relatively
small rank, then the number of parametric
determinants of all p sets of (p — 1) least
squares regression coefficients in the matrix B
can be reduced in relation to the number of
parameters that are implicitly involved in
ordinary least squares regression. The previous
discussion has been unrealistic in having been
equally concerned with the prediction of each
variable from all others in a population and in
having considered only population systems,
where sampling variation does not arise. Yet,
the principles involved in reducing the number
of parametric determinants of all elements in
B also work when considering the prediction
of any single variable from all others. The
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major statistical idea in this context is that one
can use factor analytic procedures to produce
sample-based estimators of the possibly small
number of parametric determinants of f;
values, which in turn can be used to construct
estimators of these values. These regression
estimators are expected to be advantageous,
especially when one’s sample size is relatively
small. If one has reason to believe that a
single factor is likely to be sufficient to account
for all off-diagonal covariation in the joint
predictor—criterion matrix, then as previously
noted, equal weights for all predictors are
likely to lead to a trivial loss of predictive ac-
curacy, particularly when there are several
predictors. If m is expected to exceed unity,
however, there may be no way to avoid serious
losses of predictive accuracy if equal weights
are used in place of optimal weights. Simplified
weights may be satisfactory and indeed should
be considered if one has confidence in one’s
knowledge (or beliefs) of joint predictor-
criterion factor structures. But especially when
one is only willing to venture the guess that
there are relatively few factors in the popula-
tion system, then reduced-rank regression esti-
mators may serve to considerable advantage
in relation to other possible weighting methods.
The question of how to choose factoring
methods to use in small-sample regression ap-
plications should nevertheless be approached
with care. This is the next topic for discussion.

As with least squares regression methods,
there is a conventional wisdom about factor
analytic methods that admonishes applied
workers always to use large samples if factor
results are to be generalizable. As we note
below, however, such a convention is by no
means relevant to a wide range of important
applications. Some methods, especially maxi-
mum likelihood factor analysis, yield notori-
ously unstable communality estimates for small
samples and also result in “improper” solu-
tions (those with at least one nonpositive
uniqueness variance) a large portion of the
time. But fortunately there exist other common
factor methods that are computationally effi-
cient, do not permit improper solutions, and
can be adopted for present purposes. The
simplest such method is one that was first
devised by Whittle (1953), a method that
bears a superficial resemblance to conventional
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principal component analysis. Pruzek (1977)
has discussed a simple generalization of
Whittle’s method that has special relevance
for reduced-rank regression applications.

The major idea of the Whittle method or its
generalization is to assume (nominally) that
population uniqueness variances (or commu-
nalities) are known up to a constant of pro-
portionality, say 6% Thus one may prespecify
that U? = 62l so that R — 62l becomes the
assumed form of the population common por-
tions covariance matrix. More generally, if one
wished to prespecify differentiated uniqueness
variances, say, as nonzero elements of the
diagonal matrix D,2, then R — 82D.2 would be-
come the starting point for a common factor
analysis.

Given a prespecified p X p diagonal matrix
D.? whose nonzero elements represent one’s
beliefs about population uniqueness variances,
at least up to a constant #%, then an eigen-
analysis of a rescaled sample correlation matrix
may be carried out to produce a simple system
of common factor analysis. Thus, when R,
denotes the sample correlation matrix, R,.
= D,"R,D, may be resolved as R,, =
QD,2Q’, where Q represents the set of all unit
length column eigenvectors, and D,? represents
the corresponding diagonal matrix of eigen-
values. Either a priori or empirical approaches
may be used to estimate m, the number of com-
mon factors, and 62 may be estimated as the
average value of “rejected” eigenvalues, those
corresponding to the smallest p — m roots of
R,. = D, 'R,D,! (cf. Joreskog, 1962).

The special virtue of this approach to small-
sample factoring is that by prespecifying the
diagonal D,? and estimating only the scalar
constant 6%, p — 1 fewer parameters are being
estimated in relation to virtually all other
forms of common factor analysis. A relatively
small price may be paid for inaccuracy of
prespecified D,? values unless population
uniquenesses (or more correctly, their recipro-
cals) are in fact quite heterogeneous. But of
course population uniqueness values will not
be known in practice, so that the a priori
choice of D2 values will generally merit careful

thought.
Given Equation 1 for B and the eigenanaly-
sis of R, = DR, D, it is possible to show
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(Pruzek et al,, Note 2) that
B* = [D,~'Q(I — D, QD8]

represents a sample-based identity for all
¢ (p — 1) least squares regression coefficients,
where [ Jo denotes setting diagonal elements
of the matrix in brackets equal to zero. Thus,
the reduced rank estimate of B* namely, Bn*,
can be written as

Bm*= [Du—IQm(I—OZD)\_Z)mQ,mDu——IS2]0; (2)

where it is to be understood that each of the
matrix elements and 82 derive from sample in-
formation. Equation 2 is easily computed from
R,. = D,7'R,D, ! = QD»2Q’, given that
equals the average of the p — m smallest eigen-
values in D)2 and that $? = (diag R,™)-L.
Computationally, such reduced rank estimators
can be obtained at least as efficiently as least
squares estimators.

If p is substantial and m is relatively small,
then B,.* provides a parametrically parsimoni-
ous representation of B* The idea is that if
p — m eigenvalues are in fact quite homogene-
ous (as they will be if D.2 is properly chosen),
then the elements of the corresponding eigen-
vectors are known to be statistically unreliable
(cf. Morrison, 1976). Reduced-rank estimators
simply ignore the sample information that is
associated with the rejected eigenvalues and
their eigenvectors. Thus, reduced-rank esti-
mators can be expected to be more stable than
full-rank (conventional) least squares 8; esti-
mators whenever the common factor assump-
tions for R — #2D,2 can be defended. Indeed,
the previous algebra for population systems
indicates that the eigenvectors associated with
the smallest p — m eigenvectors contribute
nothing to the matrix B whenever the popula-
tion R — U? system is of rank m. Pruzek
(Note 4) has shown that such reduced-rank
estimators constitute a class of random vari-
able ridge regression® estimators in which
# — m ridge coeflicients are employed. There
is strong evidence from simulation studies
(Pruzek, Note 5) that the reduced-rank re-
gression methods may indeed be expected to
lead to greater predictive precision than con-
ventional least squares methods in many real-
life situations. A general program has been
developed to conduct factor and regression

263

analyses of this general form (Pruzek et al,,
1976).

A number of properties of the above reduced-
rank estimators should now be made explicit.
First, because this presentation has been made
in the framework of so-called correlation
metric, B or B* have been implicitly defined
in terms of standardized regression systems. It
will often be important to be able to compute
raw-score regression coefficients from such
sample-based betas. This can be simply done
using available standard deviations as de-
scribed, for example, by Rozeboom (1966).
Although the population analysis is scale free,
sample reduced-rank analyses will not neces-
sarily be, unless maximum likelihood factoring
is used. Nevertheless, for small samples,
Whittle factoring is preferable in this context
due to its efficiency relative to scale-free factor-
ing methods.

Second, it is clear that to the extent that
communalities (or communality estimates) re-
flect reliabilities of variables, the present sys-
tem for reduced-rank regression can be said to
be accommodated to unreliabilities of the
random variable predictors as well as the
criterion variable. Indeed, Lawley and Max-
well (1973) argued that the communality of
any variable can be viewed as the upper limit
of the squared multiple correlation of any
(criterion) variable when using all other vari-
ables as predictors. This limit could be reached
in principle if the underlying factors could be
directly observed, so that there is no measure-
ment error. This argument may have special
didactic value for those individuals who some-
times speak as if all imprecision of prediction
were a consequence of only measurement error.

Beyond the above properties, reduced-rank
regression estimators hold potential for making
regression estimators more robust in some
situations, particularly when a population
covariance system can be characterized as
having a relatively low ratio of m/p. Distribu-
tional irregularities for individual (predictor)

3 Ridge regression was initially developed by Hoerl
and Kennard (1970) for the case of fixed predictors.
Pruzek (Note 4) has studied a version of ridge regres-
sion for random predictor problems and has generalized
the latter ridge regression system for the case in which
a common factor model is not expected to hold in the
population,
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variables seem likely to have little influence on
reduced-rank g; estimators, especially if there
are several other predictors that measure the
same underlying factors. Moreover, as shown
by Pruzek et al. (1976, Note 2), the stability
of individual (reduced-rank) regression coefh-
cients will tend to increase as the number of
predictors is increased for a fixed value of m,
the number of factors. It should be made
explicit that this tendency of reduced-rank
regression estimators to improve under such
conditions is opposite to what happens for
conventional least squares regression estima-
tors, which are known always to become less
stable as p is increased for a fixed m. In effect,
conventional least squares regression esti-
mates are unable to use factorial redundancy
properly when it exists. When one’s predictors
are orthogonal but predictor—criterion cor-
relations are nonzero, then the off-diagonal
rank of R must be p — 1. But when predictors
and criteria are correlated, and particularly
when both are psychometrically sampled from
the same domain of content, then the off-
diagonal rank of population Rs can probably
be assumed to be much less than p —1.

Discussion

This article was initiated, in part, as a re-
sponse to Wainer (1976). For that reason much
of the foregoing has dealt with what we see
to be problems with assumptions underlying
his equal weights theorem and with distinc-
tions he did not make among distinguishably
different prediction problems. Our arguments
should nevertheless not be taken as evidence
that highly simplified weighting schemes are
always inadequate, nor even that for some
domains of research, equal weighting of stan-
dardized predictors may be generally inappro-
priate. It has repeatedly been established by in-
vestigators such as Rozeboom (1966), Schmidt
(1971), Dawes and Corrigan (1974), and
Einhorn and Hogarth (1975), as well as Wainer
(1976) that in certain situations unit weighting
may indeed work well relative to idealized
least squares weighting. It is important, there-
fore, that those who use regression methods
for prediction have a basis for deciding whether
or not their problems are likely to be amenable
to simplified weighting schemes.
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We believe that special benefits may be apt
to follow from attention to prior structural
beliefs about relationships among variables in
a joint domain of predictors and criteria. The
foregoing considerations suggest to us that
prediction problems would often be dealt with
more effectively if investigators approached
each new problem with an aim to establish, on
relevant theoretical or empirical grounds, just
what the covariance patterns are likely to be
among observable predictors and criteria. If
these prior considerations lead to a view that
correlations among predictors and criteria are
reasonably homogeneous, then indeed, equal
or simplified weighting schemes may be all
that are required for the available predictors
of the criterion. But if the prior studies lead
instead to the view that some of the correla-
tions among the prospective variables of inter-
est are apt to be considerably different from
others, and especially if one common factor is
unlikely to be adequate for all variables, then
equal or simplified weighting schemes are less
likely to prove adequate.

The preceding discussion implies that a gen-
eral strategy for designing and conducting
applied prediction studies may commence from
careful a priori consideration of the common
factor structure of the joint predictor—criterion
covariance system. A particularly efficient way
of operationalizing such a strategy may often
be to attempt on a priori grounds to write a
matrix Fy of common factor coefficients that
describes one’s beliefs about the joint matrix
of predictor—criterion correlations among pro-
spective observable variables.

Suppose that one were to begin by specifying
as few common factors as seemed necessary for
Fo to describe the assumed factorial makeup
of the criterion, selecting predictors so as to
assure the highest possible determinacy of
these factors. Further factors might be added
to correspond to what is believed to be further
stable covariance among the predictors, Com-
putation of Ry = FoF’y + Uy for any Fy would
permit a direct assessment of the implied corre-
lational structure for Fy: Ug=diag (I—FoF).
Given a matrix of hypothetical factor coeffi-
clents that an investigator has constructed to
be representative of his structural beliefs for
the joint predictor—criterion system, the corre-
sponding R, might be input to any standard



LINEAR MODELS: ALTERNATIVES TO LEAST SQUARES

package program for regression analysis to
compare, using transgeneration procedures,
the potential virtues of various weighting
schemes for any subsets of hypothetical pre-
dictors, Simplified or equal weights may be
found, in this hypothetical framework, to be
provisionally appropriate when a particular
type of prior information is available. In fact,
if one’s prior beliefs about covariance structure
happen to be nearly correct, then such ratio-
nally—or “clinically’”’—derived weights could
be used to form a single predictor composite for
this criterion, so as to obviate the need for any
multiple regression methods. Indeed, one might
expect routinely to be able to find subsets of
predictors about which one has high confidence
in the appropriateness of a prior linear com-
binations. Yet for some variables at least, it
seems likely that such a priori judgments
typically could not be made with impunity.

To the extent that one’s prior structural
beliefs do not correspond to reality, empirically
derived weights and their associated validities
may conceivably be much different than is
suggested by the elements of R,. This is, of
course, just a special case of a priori hypothe-
sizing in the context of a particular problem
of estimation. Exploring one’s data further to
learn what they have to say beyond the
original questions or beliefs is a hallmark of
good data analysis generally, and it is at least
as relevant in prediction studies as in other
contexts.

The only technical requirement in specifying
Fo would be to make sure that all row sums of
squares are less than unity. This insures that
the derived, hypothetical Ry is positive definite
and thus satisfies the first requirement of
real-data product-moment covariance or corre-
lation matrices. There would be no reason in
principle why some of the prospective predic-
tor variables could not be defined as squares
or cubes of others, or as cross-products, and so
forth. Moreover, even group indicator vari-
ables or contrasts (like sex, religion, or experi-
mental treatment) could be used in the speci-
fication of rows of Fy. Also, several criteria
might be considered simultaneously. Whatever
the details, of course, the whole process should
be viewed chiefly as a vehicle for sharpening
one’s thinking about how to define and weight
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predictors of particular criterion variables. As
long as such a strategy is used tentatively, so
that the appropriateness of prior beliefs is
ultimately judged in light of data, this would
seem to be at least a step in the right direction
for many prediction problems. It is conceivable
that a strategy of this general form might be
further developed to make explicit, in a co-
herent Bayesian context, for example, that
any given Ry is only one of numerous possible
population covariance systems. Thus, the
strength of one’s belief or confidence in a
given Ry might be formally included in one’s
analysis. Whatever form such formalization
may take, it seems crucial to insure that major
attention be given to how one specifies the
domain of joint predictor—criterion variables—
in short, to how all variables are selected or
defined in the first place. It is interesting to
note that many conventions for test construc-
tion and validation may be viewed as special
cases of the general strategy that has been
outlined above.

A great deal of theoretical statistical work
leads to the general conclusion that the strong-
est inductive inferences one can make arise
through careful consideration of prior informa-
tion and how to express it. It would be sur-
prising if for prediction problems in particular
the same principle did not hold.
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