Skip to main content

Mark Wallace

Louise B. McGavock Chair of Neuroscience
Professor of Psychology
Professor of Hearing & Speech Sciences, Pharmacology, and Psychiatry & Behavioral Sciences

The Wallace lab is interested in better understanding how the brain synthesizes information from multiple sensory systems (e.g., vision, hearing, touch). Given that we are continually bombarded with sensory information, it seems intuitively obvious that one important brain function is to synthesize this multisensory information. Such multisensory integration enhances our ability to react to external events, as well as enriching our perception of those events and of the world. Nonetheless, despite the ubiquity and utility of multisensory processes, surprisingly little is known about their neural bases when compared with the individual sensory systems that contribute to them. Using a multidisciplinary approach, our lab seeks to fill this knowledge gap. A sampling of the techniques in use in the lab includes: animal behavior, neurophysiological recordings from single neurons and ensembles of neurons, neuroanatomical tract tracing, human psychophysics and fMRI. Currently, we are pursuing a number of questions related to multisensory processes. These include: (1) the development of cortical multisensory circuits, (2) developmental and adult plasticity in these circuits, (3) how multisensory signals are transformed into appropriate motor commands, (4) multisensory influences on normal human perception and performance, and (5) how abnormal multisensory processing may contribute to certain neurodevelopmental disabilities (e.g., dyslexia).

Lab Website

Representative Publications

Recent top cited:

Stevenson, R. A., Siemann, J. K., Schneider, B. C., Eberly, H. E., Woynaroski, T. G., Camarata, S. M., & Wallace, M. T. (2014). Multisensory temporal integration in autism spectrum disorders. Journal of Neuroscience34(3), 691-697.

Foss-Feig, J. H., Kwakye, L. D., Cascio, C. J., Burnette, C. P., Kadivar, H., Stone, W. L., & Wallace, M. T. (2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research203, 381-389.

Baum, S. H., Stevenson, R. A., & Wallace, M. T. (2015). Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder. Progress in neurobiology134, 140-160.

Full list through Google Scholar