Community of Scholars opens world of discovery to freshmen
SEE STORY ON PAGE 6
ARCHAEOLOGIST EUNTHES DISCOVERED AN EARLIER MAYA SITE

IN THE MAYA CIVILIZATION OF GUATEMALA, ASSISTANT PROFESSOR FRANCISCO ESTRADA-BELLI HAS UNCOVERED THE OLDEST KNOWN CARVED PORTRAIT OF A MAYA KING AND TWO MAJOR stone masks. His discoveries indicate that the Maya developed a complex and sophisticated civilization hundreds of years earlier than previously believed.

"ESTRADA-BELLI "IS PUSHING BACK THE TIME FOR THE EVIDENCE FROM MAYA STATE INSTITUTIONS BY SEVERAL CENTURIES," AN ARCHAEOLOGIST ELSA REMONDON OF THE AMERICAN MUSEUM OF NATURAL HISTORY IN NEW YORK CITY WAS QUOTED AS SAYING IN A LOS ANGELES TIMES ARTICLE.


IAN GRAHAM OF HARVARD UNIVERSITY DISCOVERED CIVAL IN 1984. ESTRADA-BELLI HAS BEEN STUDYING THE NEARBY CITY OF HOLMU. HE WAS USING SATELLITE IMAGING AND GPS POSITIONING TO EXPLAIN THE SURROUNDING AREA WHERE HE RE-EXAMINED CIVAL AND AHIGHS YEARS AGO. THE NEW TECHNOLOGY SHOWED THAT ITS CEREMONIAL CENTER SPANNED A HALF MILE, MORE THAN TWICE GRAHAM'S INITIAL ESTIMATE.

ESTRADA-BELLI AND GRADUATE STUDENTS MOLLY MORGAN AND JEREMY BAUER HAVE BEEN DIGGING THERE EVER SINCE WITH SUPPORT FROM THE NATIONAL GEOGRAPHIC SOCIETY.

ESTRADA-BELLI GRADUATE STUDENT JUSTIN EBERHOLD AND JENNIFER FOLEY AND RISING SENIOR JAMES DOYLE ACCOMPANIED ESTRADA-BELLI ON AN EXPLORATION TO HOLMU RECENTLY. THEY WILL BE INCLUDED IN A NEW MOVIE ON THE MAYA BY NATIONAL GEOGRAPHIC TELEVISION AND FILM.

Students garner fellowships

S EVERAL GRADUATING STUDENTS HAVE WON PRESTIGIOUS FELLOWSHIPS. Mikel “Micky” Barry, BS’04, will pursue graduate work at Harvard University in the fall, supported by a National Defense Science and Engineering Graduate (NDSEG) Fellowship.

Megan O’Grady, BS’04, has received one of 65 National Science Foundation graduate fellowships in engineering/bioengineering. She will also attend Harvard, working with alumni Kevin Parvin, MS’93, PhD’98, an assistant professor of bioengineering.

Both Barry and O’Grady completed honors theses in physics last spring. Barry conducted research on spin properties of materials and quantum mechanics, supervised by Norman Tolk, professor of physics and director of the Vanderbilt Center for Atomic and Molecular Physics at Surfaces.

O’Grady worked with John Wilkowski, Gordon A. Cain University Professor and professor of physics, on her thesis, “Electroporation of Cardiac Tissue from Unipolar Stimulation.” She studied how strong electric fields create holes in the membranes of cardiac tissue, an important factor in the response of cardiac tissue to defibrillation-strength electric shocks. In addition, Julia J. “Juli” Park, BA’04, is one of this year’s Marin Luther King Jr. Scholars, a group of 10 outstanding undergraduate and graduate students whose academic achievement and community service honor the legacy of the renowned civil rights leader’s contributions to public service and humanity.

Launched by President George W. Bush in 2002, the program offers students the opportunity to serve as summer interns at the Department of Education in Washington, D.C. Park, who majored in women’s studies, sociology and English at Vanderbilt, will continue her studies at UCLA in the fall.

Economics faculty shine

Vanderbilt professors are now editing two of the three flagship journals in economic history. Jeremy Atack, professor of economics and of history, is the coeditor of the Journal of Economic History, with Robert Margo, professor of economics and of history, as assistant editor. Margo also edits Explorations in Economic History.

Mario Cruciati, associate professor and vice chair of economics, is one of 14 academics in American history, economics and the social and behavioral sciences to become invited members of the board of the National Science Foundation (NSF) Economics Review Panel. Members of the panel advise NSF on the economic aspects of social and behavioral science research and the NSF’s other programs. With the panel, Cruciati has previously advised the National Science Foundation and Robert Margo previously served on the panel.

Research group receives $8.3M to establish supercomputing center

WHAT DO PAUL SHLDON, WHO STUDIES ELEMENTARY PARTICLES, JACO LOO, WHO ANALYZES DIMENSIONAL GEOMETRY, AND RON SCHIMPR, WHO INVESTIGATES THE EFFECTS OF RADIATION ON SPACE ELECTRONICS, HAVE IN COMMON? THEY’RE ALL FUNDAMENTAL PHYSICISTS WHO WORK ON QUANTUM MECHANICS, PARTICLE PHYSICS AND DEFIBRILLATION-STRENGTH ELECTRIC SHOCKS. IT’S AN UNUSUAL COMBINATION, BUT THEY’RE WORKING TOGETHER TO CREATE A STATE-OF-THE-ART SUPERCOMPUTING CENTER.

The new evidence shows that "Pre-classic Maya societies already had many features that have been attributed to this Classic Period — kings, complex iconography, elaborate palaces and burials," says Estrada-Belli. "The origin of the Maya civilization has to be found in the first part of the Pre-classic period, rather than the last part."

Ian Graham of Harvard University discovered Cival in 1984. Estrada-Belli has been studying the nearby city of Holmul. He was using satellite imaging and GPS positioning to explore the surrounding area where he re-discovered Cival four years ago. The new technology showed that its ceremonial center spanned a half mile, more than twice Graham’s initial estimate.

Estrada-Belli and graduate students Molly Morgan and Jeremy Bauer have been digging there ever since with support from the National Geographic Society.

Vanderbilt graduate students Justin Eberholtz and Jennifer Foley and rising senior James Doyle accompanied Estrada-Belli on an expedition to Holmul recently. They will be included in a new movie on the Maya by National Geographic Television and Film.

Students garner fellowships

Several graduating students have won prestigious fellowships. Mikel “Micky” Barry, BS’04, will pursue graduate work at Harvard University in the fall, supported by a National Defense Science and Engineering Graduate (NDSEG) Fellowship.

Megan O’Grady, BS’04, has received one of 65 National Science Foundation graduate fellowships in engineering/bioengineering. She will also attend Harvard, working with alumni Kevin Parvin, MS’93, PhD’98, an assistant professor of bioengineering.

Both Barry and O’Grady completed honors theses in physics last spring. Barry conducted research on spin properties of materials and quantum mechanics, supervised by Norman Tolk, professor of physics and director of the Vanderbilt Center for Atomic and Molecular Physics at Surfaces.

O’Grady worked with John Wilkowski, Gordon A. Cain University Professor and professor of physics, on her thesis, “Electroporation of Cardiac Tissue from Unipolar Stimulation.” She studied how strong electric fields create holes in the membranes of cardiac tissue, an important factor in the response of cardiac tissue to defibrillation-strength electric shocks.

In addition, Julia J. “Juli” Park, BA’04, is one of this year’s Marin Luther King Jr. Scholars, a group of 10 outstanding undergraduate and graduate students whose academic achievement and community service honor the legacy of the renowned civil rights leader’s contributions to public service and humanity.

Launched by President George W. Bush in 2002, the program offers students the opportunity to serve as summer interns at the Department of Education in Washington, D.C. Park, who majored in women’s studies, sociology and English at Vanderbilt, will continue her studies at UCLA in the fall.

Economics faculty shine

Vanderbilt professors are now editing two of the three flagship journals in economic history. Jeremy Atack, professor of economics and of history, is the coeditor of the Journal of Economic History, with Robert Margo, professor of economics and of history, as assistant editor. Margo also edits Explorations in Economic History.

Mario Cruciati, associate professor and vice chair of economics, is one of 14 academics in American history, economics and the social and behavioral sciences to become invited members of the board of the National Science Foundation (NSF) Economics Review Panel. Members of the panel advise NSF on the economic aspects of social and behavioral science research and the NSF’s other programs. With the panel, Cruciati has previously advised the National Science Foundation and Robert Margo previously served on the panel.

Research group receives $8.3M to establish supercomputing center

What do Paul Sheldon, who studies elementary particles, Jaco Loor, who analyzes dimensional geometry, and Ron Schimpff, who investigates the effects of radiation on space electronics, have in common? They’re all fundamental physicists who work on quantum mechanics, particle physics and defibrillation-strength electric shocks. It’s an unusual combination, but they’re working together to create a state-of-the-art supercomputing center.

The Fine Arts Gallery’s collection of Asian art numbers about 2,500 pieces. Among them is this porcelain Ding ware vessel from the Northern Song dynasty (960-1126 C.E.), donated by Chauncey Lowe of Winter Park, Florida. The vase is considered one of the most important pieces produced in Chinese ceramic production, Ding ware was produced for the emperor’s use alone. This piece was the first of several donated to the University by Lowe, who owns perhaps the most important private collection of Ding ware in the United States.
Judith DeMoss Campbell

Two views of China

China Dispatch

Catherine “Katie” Galbreath, BA’02, is completing a one-year internship teaching English in China. Here are some of her observations.

Before I arrived in China’s northeastern Jilin Province in September 2003, mere mentions of the country conjured up images of green, terraced rice fields cultivated by peasants in pointed, hand-woven straw hats. I was surprised, therefore, by the modern campus of Hua Qiao Foreign Language Institute, where I would spend a year teaching English to college sophomores. I soon acquired the reputation of a dedicated, but approachable teacher. When a student named Gao Yang invited me to her grandparents’ home in a rural village, I eagerly accepted.

Gao Yang’s grandparents met us at the door, and immediately welcomed me—the first foreigner they had ever seen—into their humble two-room home constructed of mud bricks. Their knowledge of English and West was a far cry from the abilities of the students I taught, who had just completed a mandatory five-year course of Western economics and knew some terms, but none about work on Freshman Orientation. Her goal! Get every single freshman registered to vote. As president of the political science organization and treasurer of the College Republicans, Sause is planning Vote Vanderbilt, an event in August when some 1,500 freshmen from all parts of the country will swarm onto campus. Sause and her committee will provide information on voter registration and simplify for students the tangle of absentee voting regulations and deadlines set by different states. Come fall, Vanderbilt Lead will swing into high gear with still more voter registration opportunities, along with forums and other events. Also scheduled is a history seminar for freshmen taught by Dalhouse. Titled “Presidential Politics and College Students,” it, too, is designed to get freshmen excited about voting.

Students are “campaigning” for voters in a non-partisan drive to get their generation registered and voting during the Democratic primary season last winter, political science major Courtney Frytell began searching the Internet for the candidate that best represented her views.

The junior from Cincinnati found that candidate in General Wesley Clark and began working with the Clark campaign. But as his hopes of winning the Democratic nomination waned, she found what she thought was an even better use of her time. She joined a group called VanderVotes (now Vanderbilt Lead), whose primary goal is to encourage Vanderbilt students and others to register to vote.

“When I started doing research on just how disenfranchised the 18 to 24 [year-old] voting block was, I just had to get involved,” she says. “I really believe that the earlier you educate [voters], the more likely that they will vote for their entire lives.”

How do you get people under the age of 25 interested in politics and voting? That’s just one of the questions that VanderLead has tackled during this presidential election year. Mark Hand, a sophomore from Shreveport, Louisiana, and one of the organization’s guiding lights, believes that campaign issues provide the key.

Hand sees the problem as cyclical. “Because politicians don’t talk about our issues, we don’t vote. And because we don’t vote, politicians don’t talk about our issues,” he says. “We have to figure out what kids care about and go from there.”

Hot button issues include student financial aid, the war in Iraq, and social issues such as the environment, education, abortion and gay marriage. Hand hopes that, in a day when voters tend to be polarized, Vanderbilt Lead can encourage reasonable debate on the issues rather than inflammatory rhetoric.

One of over 30 organizations under the umbrella of the University’s Office of Active Citizenship and Service (OACS), Vanderbilt Lead was developed by Mark Dalhouse, OACS’s new director, in concert with a handpicked group of student leaders.

Upon his arrival last summer as the first full-time director of OACS (formerly the Office of Volunteer Opportunities), Dalhouse says he “found students who had great interest in serving the community and just needed someone to help them get organized.”

During its first year, Vanderbilt Lead has hosted several opportunities for voter registration both on campus and off, including popular party primaries. The student volunteers gathered to watch the Democratic returns and register to vote.

Carlin Sause, a junior from Lake Oswego, Oregon, chose to

HUMANITIES COURSE EXPLORES ELECTION COVERAGE

Across campus in Wilson Hall, the Department of Communication Studies joined forces with the humanities this past spring to offer a special election-year course for undergraduates titled “How the Media Shapes Policy.” Designed to probe the media’s effect on presidential politics and elections in general, the popular class featured a different aspect of media coverage each week.

Speakers like Daniel Casse, Roy Neal, BA’67, Larry Woods and Ann McDaniel, BA’77, chosen for their hands-on political knowledge, opened up the class for lively debate, with students taking all sides of the issues. Casse is with the White House Writers Group; Neel is an adjunct professor of political science and former chief of staff to Vice President Al Gore; Woods, an attorney, has served as a debate coach for Democratic hopefuls, and McDaniel is vice president of the Washington Post.

Offered during the spring semester, Humanities 161 is an interdisciplinary course, which takes up a different current-events topic each year.
Community of Scholars opens world of discovery to freshmen

For freshmen interested in science, laboratory work often seems part of an intimidating and distant domain. Struggling to memorize facts, equations and theorems in their classes, the process of scientific discovery is just another abstract concept.

Now, a small group of freshmen and sophomores have the unique opportunity to set aside their textbooks and get behind the microscope. The Community of Scholars program puts these students at the sides of upperclassmen, graduate students, post-doctoral fellows and faculty and encourages them to do the one thing they have been trying hardest to avoid since they arrived at Vanderbilt—make mistakes.

“It’s big for these kids to learn to make mistakes,” says Ellen Fanning, Stevenson Professor of Biology and Community of Scholars program chair. “It takes four to six weeks until they get their feet on the ground and start taking chances. This growth happens in a natural lab setting but not in a stratified classroom setting.”

The Community of Scholars grew out of an invitation by the Howard Hughes Medical Institute to Vanderbilt and other universities to submit applications for funding for personalized educational and research-based initiatives for undergraduates.

“We decided it would be possible to set up an artificial community of scholars where, at least for the summer, freshmen and sophomores can be introduced into doing research,” Fanning says.

The program, now in its second year, extended invitations to 11 freshmen and one high school senior for this summer. The students, who come from different areas of engineering as well as biology and pre-med, participate in a research project that touches on molecular biology, biochemistry and genetics.

The key to the program is involving multiple levels of experience in the mentoring process.

“When I was a student and a faculty member in Germany, I learned how to do science by being at the bench with those who would provide me guidance along the way,” Fanning says.

One thing that has always bethorned me is the very stratified way in which we treat our undergraduates here—we don’t have any transition between undergraduates, graduate students and post-docs.”

Kathy Friedman, assistant professor of biological sciences and co-chair of the program, benefited from a similar approach when she was an undergraduate.

“I had an amazing undergraduate research experience and feel like it led me to choose a research career,” Friedman says. “I really appreciate the opportunity the program provides, as my path into research might have been different without it.”

Friedman says the program is most valuable for students who are interested in going into academics and teaching, as it provides them with the laboratory experience and the encouragement to pursue a career in teaching.

“I think the main thing is to increase the conceptual awareness of what science is and how it’s made—how do we know what we know?” — Professor Ellen Fanning

Currently, the program is in its second year and continues to grow in size and breadth.

“The thought is that you put in three or four hours per hour of credit—but if you don’t put in more time you won’t get enough results,” Fanning says.

“The thought is that you put in three or four hours per hour of credit—but if you don’t put in more time you won’t get enough results,” Fanning says.

“The thought is that you put in three or four hours per hour of credit—but if you don’t put in more time you won’t get enough results,” Fanning says.

“I think the main thing is to increase the conceptual awareness of what science is and how it’s made—how do we know what we know?” — Professor Ellen Fanning

Currently, the program is in its second year and continues to grow in size and breadth.

“The thought is that you put in three or four hours per hour of credit—but if you don’t put in more time you won’t get enough results,” Fanning says.

“The thought is that you put in three or four hours per hour of credit—but if you don’t put in more time you won’t get enough results,” Fanning says.

“I think the main thing is to increase the conceptual awareness of what science is and how it’s made—how do we know what we know?” — Professor Ellen Fanning

Currently, the program is in its second year and continues to grow in size and breadth.

“The thought is that you put in three or four hours per hour of credit—but if you don’t put in more time you won’t get enough results,” Fanning says.
Hard-core environmentalism replaced by “light-green” policies

Professor Michael Bess, who has researched the past 40 years of the French environmental movement, has found that not only France, but also many other nations, including the United States, are becoming “light-green” societies.

Most people still want to protect nature and to purchase environmentally friendly products, but they do not always give up the “cornucopia of modern technology and what consumer capitalism offers,” says Bess, associate professor of history. “The original Greens back in the 1960s believed that to protect the environment, we needed to make sacrifices, such as purchasing fewer manufactured goods. Bess explains that although this concept has never been widely accepted by the general population, many citizens here and overseas still take seriously the idea of making tangible changes to help the environment.

“Our society has bought the green message, but it is not in the full dark-green version that the original activists of the 1960s advocated,” says Bess, author of "nations. “In the 1960s, people just chucked garbage in ravines and ditches; now because of improved recycling, waste-to-energy, and other ways to reduce the environmental damage from trash, Bess says. Hundreds of changes have been made during the last 40 years to protect nature. Some are “mere green-packaging” on the same product, but others are making a significant difference, Bess says.

“I do not want to sound like some type of Pollyanna, saying everything is fine the way it is.” Bess acknowledges that there are still on track for environmental collapse over the long haul if we keep going the way we are going today, without making more green changes. But we also have good reason for hope. There has been a real change in the attitude of governments and behaviors since the 1960s. I believe we have a fighting chance of saving the environment over the next century if we continue the current path, then in a few decades it will take a considerable step. We have to keep darkening the shade of green, intensifying our commitment to a truly sustainable economy.”

— Ann Marie Deer Oswe

RESEARCH BRIEFS

New device can help defend against novel biological agents

The ability to analyze and defend against novel biological agents has been strengthened by the development of a new device that can monitor the metabolism of living cells in near real time.

“Since we have been lucky that terrorists have used well-known biological agents like anthrax and sarin gas,” says David Cliffe, assistant professor of physics, who led the development group working under the auspices of the Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE), “I don’t know if we will be able to determine exactly which group of cells is the target, and the response of the affected cells will provide us with important clues about the manner of its attack.”

Because of its potential application for bioterrorism and chemical and biological warfare, NSF's Advance Research Projects Agency (DARPA) has funded the development of the device. But the microphysiometer also has important potential applications in detecting and assessing the toxicity of environmental chemicals. The Vanderbilt and Fisk Universities have won a highly competitive, $2.9 million national grant to construct research and train doctoral students in the rapidly developing multidisciplinary field of nanotechnology and nanoscience.

The five-year Integrative Graduate Education and Research Traineeship (IGERT) grant from the National Science Foundation (NSF) will fund an innovative educational and research program centered on the world of nanoscale solids. Such research will lead to the creation of nanoscale materials for a wide variety of enterprises, particularly medicine and the computer industry.

“Nanoscale” is considered to fall between 1-100 nanometers in size. A nanometer is about four atoms long, and so on. Then, when an unknown agent is introduced to human cells, quickly, we will be able to determine exactly which group of cells is the target, and the response of the affected cells will provide us with important clues about the manner of its attack.”

Because of its potential application for bioterrorism and chemical and biological warfare, NSF’s Advance Research Projects Agency (DARPA) has funded the development of the device. But the microphysiometer also has important potential applications in detecting and assessing the toxicity of environmental chemicals, the Defense Advanced Research Projects Agency (DARPA) has funded the development of the device.

Because of its potential application for bioterrorism and chemical and biological warfare, NSF’s Advance Research Projects Agency (DARPA) has funded the development of the device.

Vanderbilt and Fisk Universities have won a highly competitive, $2.9 million national grant to construct research and train doctoral students in the rapidly developing multidisciplinary field of nanotechnology and nanoscience.

The five-year Integrative Graduate Education and Research Traineeship (IGERT) grant from the National Science Foundation (NSF) will fund an innovative educational and research program centered on the world of nanoscale solids. Such research will lead to the creation of nanoscale materials for a wide variety of enterprises, particularly medicine and the computer industry.

“Nanoscale” is considered to fall between 1-100 nanometers in size. A nanometer is about four atoms long, and so on. Then, when a new unknown agent is introduced to human cells, quickly, we will be able to determine exactly which group of cells is the target, and the response of the affected cells will provide us with important clues about the manner of its attack.”

Because of its potential application for bioterrorism and chemical and biological warfare, NSF’s Advance Research Projects Agency (DARPA) has funded the development of the device.

Vanderbilt and Fisk Universities have won a highly competitive, $2.9 million national grant to construct research and train doctoral students in the rapidly developing multidisciplinary field of nanotechnology and nanoscience.

The five-year Integrative Graduate Education and Research Traineeship (IGERT) grant from the National Science Foundation (NSF) will fund an innovative educational and research program centered on the world of nanoscale solids. Such research will lead to the creation of nanoscale materials for a wide variety of enterprises, particularly medicine and the computer industry.

“Nanoscale” is considered to fall between 1-100 nanometers in size. A nanometer is about four atoms long, and so on. Then, when a new unknown agent is introduced to human cells, quickly, we will be able to determine exactly which group of cells is the target, and the response of the affected cells will provide us with important clues about the manner of its attack.”

Because of its potential application for bioterrorism and chemical and biological warfare, NSF’s Advance Research Projects Agency (DARPA) has funded the development of the device.

Vanderbilt and Fisk Universities have won a highly competitive, $2.9 million national grant to construct research and train doctoral students in the rapidly developing multidisciplinary field of nanotechnology and nanoscience.

The five-year Integrative Graduate Education and Research Traineeship (IGERT) grant from the National Science Foundation (NSF) will fund an innovative educational and research program centered on the world of nanoscale solids. Such research will lead to the creation of nanoscale materials for a wide variety of enterprises, particularly medicine and the computer industry.

“Nanoscale” is considered to fall between 1-100 nanometers in size. A nanometer is about four atoms long, and so on. Then, when a new unknown agent is introduced to human cells, quickly, we will be able to determine exactly which group of cells is the target, and the response of the affected cells will provide us with important clues about the manner of its attack.”

Because of its potential application for bioterrorism and chemical and biological warfare, NSF’s Advance Research Projects Agency (DARPA) has funded the development of the device.

Vanderbilt and Fisk Universities have won a highly competitive, $2.9 million national grant to construct research and train doctoral students in the rapidly developing multidisciplinary field of nanotechnology and nanoscience.

The five-year Integrative Graduate Education and Research Traineeship (IGERT) grant from the National Science Foundation (NSF) will fund an innovative educational and research program centered on the world of nanoscale solids. Such research will lead to the creation of nanoscale materials for a wide variety of enterprises, particularly medicine and the computer industry.

“Nanoscale” is considered to fall between 1-100 nanometers in size. A nanometer is about four atoms long, and so on. Then, when a new unknown agent is introduced to human cells, quickly, we will be able to determine exactly which group of cells is the target, and the response of the affected cells will provide us with important clues about the manner of its attack.”

Because of its potential application for bioterrorism and chemical and biological warfare, NSF’s Advance Research Projects Agency (DARPA) has funded the development of the device.

Vanderbilt and Fisk Universities have won a highly competitive, $2.9 million national grant to construct research and train doctoral students in the rapidly developing multidisciplinary field of nanotechnology and nanoscience.

The five-year Integrative Graduate Education and Research Traineeship (IGERT) grant from the National Science Foundation (NSF) will fund an innovative educational and research program centered on the world of nanoscale solids. Such research will lead to the creation of nanoscale materials for a wide variety of enterprises, particularly medicine and the computer industry.

“Nanoscale” is considered to fall between 1-100 nanometers in size. A nanometer is about four atoms long, and so on. Then, when a new unknown agent is introduced to human cells, quickly, we will be able to determine exactly which group of cells is the target, and the response of the affected cells will provide us with important clues about the manner of its attack.”

Because of its potential application for bioterrorism and chemical and biological warfare, NSF’s Advance Research Projects Agency (DARPA) has funded the development of the device.

Vanderbilt and Fisk Universities have won a highly competitive, $2.9 million national grant to construct research and train doctoral students in the rapidly developing multidisciplinary field of nanotechnology and nanoscience.

The five-year Integrative Graduate Education and Research Traineeship (IGERT) grant from the National Science Foundation (NSF) will fund an innovative educational and research program centered on the world of nanoscale solids. Such research will lead to the creation of nanoscale materials for a wide variety of enterprises, particularly medicine and the computer industry.

“Nanoscale” is considered to fall between 1-100 nanometers in size. A nanometer is about four atoms long, and so on. Then, when a new unknown agent is introduced to human cells, quickly, we will be able to determine exactly which group of cells is the target, and the response of the affected cells will provide us with important clues about the manner of its attack.”

Because of its potential application for bioterrorism and chemical and biological warfare, NSF’s Advance Research Projects Agency (DARPA) has funded the development of the device. But the microphysiometer also has important potential applications in detecting and assessing the toxicity of environmental chemicals. The Vanderbilt and Fisk Universities have won a highly competitive, $2.9 million national grant to construct research and train doctoral students in the rapidly developing multidisciplinary field of nanotechnology and nanoscience.

The five-year Integrative Graduate Education and Research Traineeship (IGERT) grant from the National Science Foundation (NSF) will fund an innovative educational and research program centered on the world of nanoscale solids. Such research will lead to the creation of nanoscale materials for a wide variety of enterprises, particularly medicine and the computer industry.

“Nanoscale” is considered to fall between 1-100 nanometers in size. A nanometer is about four atoms long, and so on. Then, when a new unknown agent is introduced to human cells, quickly, we will be able to determine exactly which group of cells is the target, and the response of the affected cells will provide us with important clues about the manner of its attack.”

Because of its potential application for bioterrorism and chemical and biological warfare, NSF’s Advance Research Projects Agency (DARPA) has funded the development of the device.

Vanderbilt and Fisk Universities have won a highly competitive, $2.9 million national grant to construct research and train doctoral students in the rapidly developing multidisciplinary field of nanotechnology and nanoscience. 
CLASS NOTES ON DORE2DORE
Alumni can now read class notes online at www.dore2dore.net. Simply visit www.dore2dore.net.

In addition, alumni can also update their information, find classmates through the online directory, apply to have their e-mail forwarded, and access the Commodore Career Networking and alumni discussion groups.

A&F FACULTY HONORED
Three of the top five University honors went to A&F faculty members during the Spring Faculty Assembly in April.

Edward F. Fischer, associate professor of anthropology and director of the Center for Latin American and Iberian Studies, received the Ellen Gregg Ingalls Award for Excellence in Undergraduate Teaching.

Sandra J. Rosenthall, associate professor of chemistry and physics, was given the Madison Sarratt Prize for Excellence in Undergraduate Teaching.

The Joe B. Wyatt Distinguished University Professor Award went to Marshall C. Eaton, professor of history and chair of the department.

A&F CORNERSTONE RECEIVES AWARD OF EXCELLENCE
For the fourth straight year, the A&F Cornerstone was included among the winners in the CASE District III 2004 communications contest. The Cornerstone received an Award of Excellence among educational and professional brochures and tabloids published by colleges and universities in the nine Southeastern states comprising the Council for the Advancement and Support of Education’s District III.

Nationally prominent political scientist dies
Avery Leiserson, a distinguished Vanderbilt University political scholar who served in a variety of leadership roles, died Feb. 14, in Nashville. The professor of political science, emeritus, was 90 years old and had been suffering from pneumonia.

Leiserson was a former president of the American Political Science Association and the Southern Political Science Association as well as chair of his department for 11 years. He helped found the Tennessee Political Science Association.

Leiserson helped bring many outstanding professors to campus and was part of the group that first proposed a Black Studies Program in the College of Arts and Science. In 1967 he received the Harvie Branscomb Distinguished Service Award.

Professor of Political Science George Graham, who worked closely with Leiserson, said that more than one dean and many professors called him “the conscience of the faculty.”

Kudos
Robert Barsky, professor of French and comparative literature, has launched a new journal called Ameriques, which will feature important issues related to the Americas.

Marshall Eakin, professor and chair of the Department of History, is the new executive director of the Brazilian Studies Association.

John Geer, professor of political science, is the new editor of the Journal of Politics, one of the discipline’s three most prestigious scholarly journals.

Steve Hollen, professor of psychology, recently became a Fellow of the American Psychological Society.

Business Turnover has included Jon Kaas, distinguished professor of psychology, and Alexis O’Conner, Centennial Professor of mathematics, along with Professor Frank Parker from the School of Engineering, in an article titled “Top 10 Scientists.”

Philip Rasico, professor of Spanish and Portuguese, has been elected to the Real Academia de Buenas Letras de Barcelona, one of the oldest and most prestigious learned societies in Spain.

Virginia Scott, associate professor of French and chair of the Department of French and Italian, has received the Chevalier dans l’Ordre des Palmes Académiques from the French Minister of Education. Created in 1808 by Napoleon, the honor went to Scott for her contributions to the teaching of the French language and culture.

Carol Swain, professor of political science, and law, was recently inducted into the Nu of Virginia chapter of Phi Beta Kappa at Roanoke College.

Susan Ford Wiltshire, professor and chair of the Department of Classics, recently was nominated for Nashville’s 2004 Athena Award.
In 1940, Charles C. Winnia and Violet Jane “V.J.” Watkins, MA’40, sat next to each other in Professor Fleming’s political science class at Vanderbilt. Propinquity grew into a romance that was interrupted when Winnia became a fighter pilot in the U.S. Marine Corps in 1941. For several years during the early days of the war, he kept a diary chronicling his missions against the Japanese in the Pacific. He also wrote of his love for Watkins, and his dream of marrying her at war’s end.

Tragically, Winnia’s plane was shot down over Bougainville in the Solomon Islands in 1943, and he was officially declared dead in 1946. His diary—nearly forgotten for over 60 years—was discovered recently and read by Watkins for the first time. Their story was the subject of a National Public Radio program that aired in March 2004. More information about the couple and the diary is available at http://www.npr.org or at the Agnes Scott College Website, http://www.agnesscott.edu, where Watkins earned her undergraduate degree.

Watkins and Winnia were at the forefront of a wave of wartime romances that started on the Vanderbilt campus during World War II. Here are some photographs of that long ago era courtesy of the Vanderbilt Photographic Archives, Agnes Scott College, and the U.S. Marine Corps.