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ABSTRACT

This paper describes a volume-conductor model of the apex of the heart that accounts
for the spiraling tissue geometry. Analytic expressions are derived for the potential and
magnetic field produced by a cardiac action potential propagating outward from the apex.
The model predicts the existence of new information in the magnetic field that is not
present in the electrical potential.

INTRODUCTION

A central question in biomagnetism is whether a biomagnetic field can
contain information not present in the bioelectric potential. We will address
this question by calculating the electric and magnetic fields produced at the
apex of the heart. Figure 1 shows one of the unique features of this tissue:
the unusual geometry of the fibers, which spiral around a central vortex at
the apex of the left ventricle. Our goal is to calculate the electric and
magnetic fields produced by a propagating cardiac action potential using a
model of the apex of the heart that incorporates this spiraling structure. In
particular, we will show that this fiber geometry leads to biomagnetic fields
that contain information about the tissue that cannot be obtained from the
bioelectric potential. Such “electrically silent magnetic fields” can be pro-
duced in tissues with either spiraling or helical fiber geometries [1]. At the
apex of the heart, these electrically silent magnetic fields are exceptionally
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F1G. 1. A drawing of the apex of the heart. Taken from an anatomical study by Mall,
1911 [48].

large, and should be easily detectable in an experiment using a SQUID
magnetometer.

INFORMATION CONTENT OF THE MCG

Since the first measurement of the magnetocardiogram by Baule and
Mcfee in 1963 [2], there has been a question whether the magnetocardiogram
(MCG) contains information not present in the electrocardiogram (ECG). It
is possible to postulate simple current sources representing the cardiac
electrical activity that have identical electric potentials at the body surface,
but have different magnetic fields [3]. Any impressed current density in the
heart can be represented by a Helmholtz decomposition, and in 1972
Plonsey used this fact to show that the ECG and MCG might contain
independent information [4). Rush subsequently argued that physiological
constraints prevent-the ECG and the MCG from having different informa-
tion content [5]. Wikswo and Barach suggested a counterexample to Rush’s
arguments in which two impressed current distributions in the heart have
identical external electric fields but differing external magnetic fields [6]. The
physiological motivation for Wikswo and Barach’s prediction was the ob-
servation by Corbin and Scher that the anisotropy of cardiac tissue could
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produce current distributions, associated with small, spherical or hemispheri-
cal wavefronts, that were not consistent with: the then widely accepted
uniform double-layer model of cardiac activation {7]. The work by Corbin
and Scher has since been confirmed and extended by several authors [8-11].
Using a multipole expansion of .the impressed :current source, Katila and
Karp [12] and Wikswo [13] have shown that the antisymmetric part of the
impressed-current quadrupole tensor produces new information in the MCG.
However, in 1982 Plonsey suggested that measurements of the external
bioelectric field do, in fact, completely determine the external biomagnetic
field because the impressed current contributes much less to the biomagnetic
fields than do secondary sources due to the presence of the resistive cell
. membranes [14]. The general relationship between the ECG and MCG, and
the possibility.that the magnetic field of the heart might contain information
not present in the electric potential, were reviewed by Wikswo [13].

- There have been several recent theoretical investigations into the relative
information content of -bioelectric and biomagnetic fields. Titomir and
- Kneppo [15, 16] have shown how multipole expansions of the cardiac electric
and magnetic fields can be used to detect new information. Using a

", bidomain model of cardiac tissue, Sepulveda and Wikswo [17] demonstrated

. that measurements of the electric action potential alone are insufficient to
completely determine the electrical properties of cardiac muscle, but that
combined measurements of the magnetic and electric fields can be used to
determine these properties. Roth and Wikswo [1] have shown that bioelectric

- potentials produced in. tissues with spiraling or helical fiber geometries can

lead to electrically silent magnetic fields, and they derived analytic equations

for these fields. in:the special case of a cylindrical strand of fibers. The
unusual fiber .geometry was incorporated into their model by including
off-diagonal terms in the conductivity tensor.

Only recently has experimental evidence been obtained to address the
question of information content of the MCG. Burstein and Cohen {18] found
that one-dimensional strands of frog cardiac muscle generate magnetic and
electric fields that contain the same information when measured from 1 to 5
cm away from a wavefront 1 mm or less long propagating along the strand.
However, these experiments do not exclude the possibility that electrically
silent magnetic fields might be produced in tissues with more complex fiber
- geometries. On the other hand, recordings of the magnetocardiogram by
MacAulay et al. [19,20], Nousiainen et al. [21], Varpula et al. [22], and
Gonnelli and Agnello [23] provide evidence that there may be new informa-
tion in the MCG.

Preliminary comparisons of expenmenta] MCG maps with calculations of
the heart’s magnetic field that take into account the anisotropy of cardiac
tissue are just beginning to appear. Campos et al. [24] have calculated the
MCG using a multiple dipole model and Durrer et al’s [25] data for



194 B.J. ROTH, W. GUO, AND J. P. WIKSWQ, JR.

propagation of the cardiac wavefront in the normal heart. They accounted
for the tissue anisotropy by orienting the dipoles at an angle with respect to
the direction of propagation, and found that their model could predict many
of the features observed in experimentaily measured MCGs. Gonnelli and
Agnello [26] have similarly modeled the cardiac activation wavefront as a
hemisphere, using Streeter’s [27] data for the fiber orientation in the heart.
Their calculated MCG maps also showed a striking resemblance to measured
data. .

METHODS

Many of the previous theoretical and experimental studies of the MCG:
suffer from the lack of accurate knowledge of the exact shape of the heart,
the fiber geometry, and the precise path of the depolarization wavefront. It
seems that a better way to answer the fundamental question of information
content is to study as simple a system as possible, but one that is still
complex enough to produce electrically silent magnetic fields. A small
circular wavefront initiated at the apex of the heart is such a system.

Our calculation does not predict MCG maps, as does the work of
Campos et al. {24] and Gonnelli and Agnello [26]. However, our model does
have several advantages over these other works. First, the system is idealized
enough that a fairly simple analytic solution can be found for both the
electric potential and the magnetic field, allowing us to answer unambigu-
ously questions about the relative information content of these two fields.
Second, the model can be tested by an in vifro experiment, allowing-the
experimenter to have much more control over the experimental parameters -
and conditions. Idealized models and in vitro experiments are always open
to the criticism that they are artificial and do not accurately represent the °
properties of the whole heart in vivo. However, these criticisms must be
weighed against the extreme difficulty of developing models of the whole
heart, with all its complexity, and especially the uncertainties in validating
these models experimentally. This calculation is not meant to quantitatively
model the whole heart in vivo. It does model a possible in vitro experiment,
and may provide some insight into the qualitative interpretation of the
MCG. '

We will ignore the overall curvature of the heart and assume that the apex
is essentially a plane slab of tissue of thickness / (see Figure 2). This will be
a good approximation as long as the distance from the apex to the depolar-
ization wavefront is small compared to the radius of curvature of the heart.
The tissue is assumed to lie in an unbounded saline bath with conductivity
o,. We consider only action potentials that originate at the apex and
propagate radially outward. This is a good approximation to an in vitro
experiment in which the tissue is stimulated at the apex. We use a cylindrical
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F1G. 2.. The geometry of a slab of cardiac tissue. The thickness of the tissue is /, the
conductivity of the saline bath is o,, and the conductivities of the intracellular and
interstitial volumes of the tissue are §; and §, respectively. The variables p and  are the
cylindrical coordinates, and the curved lines represent the local fiber direction.

coordinate system to describe the tissue, with the z-axis passing through the
apex center, oriented perpendicular to the plane of ‘the tissue. The variables
p and @ are the radial and azimuthal coordinates, shown in Figure 2. We
assume that the tissue is cylindrically symmetric, which amounts to ignoring
the presence of the second vortex in Figure 1 due to the right ventricle. This
is valid if we assume that the wavefront has not moved beyond the left
ventricle.

Cardiac tissue is a syncytium, and therefore can be represented by a
bidomain model [28-32], with intracellular and -intefstitial conductivity
tensors &, and §&,, respectively. The components of the conductivity tensors
are determined by the electrical properties of the tissue and the fiber
geometry. On a large scale (millimeters) the fiber direction changes with
position as the fibers spiral around the apex. We assume, however, that on a
smaller scale (tenths of millimeters) each patch of tissue has a well-defined
local fiber direction (Figure 3). In principle this direction of highest conduc-
tivity could be different in the intracellular and interstitial domains, al-
though in practice this is unlikely; however, the anisotropy ratios in the two
spaces are most likely different [33]. Let us assume that for the intracellular
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)
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Fi1G. 3. The unit vectors 1 and t represent the directions parallel and perpendicular to
the local fiber direction. The vectors p and 0 are the umt vectors in the cylmdncal
coordinate system. The angle between 1 and p is x.

domain the direction parallel to the local fiber direction, termed the longitu-
dinal direction, has conductivity o;;, and the direction perpendicular to the
local fiber direction, termed the transverse direction, has conductivity o;,,
and that o, and o, are constant throughout the tissue. Furthermore, we
assume that the longitudinal direction makes everywhere a constant angle x;
with the p-direction (Fig. 3). Then for any small region of tissue, the
intracellular conductivity tensor can be written with respect to a local
coordinate system oriented along the longitudinal direction as

g 0 O :
0 o, O0]. 1)
0 0 o

it
To represent this tensor in cylindrical coordinates, we must rotate our frame
of reference from one aligned with the fiber direction to one oriented along

the p, 0, and z directions. To rotate a tensor, we must multiply it on each
side by a rotation matrix

pp Op
of? o; 0

ofr o,.” 0

coS X; sinx, Ol{s;, O O}|[cosx, —sinx, O
=| —sinx; cosx;, 0]/ 0 o, O]|siny, cosx, 0|, (2)

o 0 1/l0 0 of{ 0 0 1
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which leads to

o; o,
0 0 o~
- 2 .
0, cos’ x; + @, sin’ x; ~(oy—0;)cosx;sinx, O
—( 0, —0;) cos x; sin x; % sin’ X+ o, cos? Xi 0l- (3

0 0 o,
The conductivity tensor has four independent nonvanishing components: the
three diagonal components o?*, 6%, and 67, and one off-diagonal compo-
nent o%°. The off-diagonal one reflects the spiraling tissue geometry. The
assumption that the angle x; is constant throughout the tissue implies that
the conductivity tensor is independent of position.

If x;,=0 or 90°, the off-diagonal components vanish, and if x, =45°,
they have their maximum value. When the angle x; is 45°, the conductivity
tensor has the simple form

oo o, + o0, 0, — O,

i it
of? o 3 -—3 0
o o o |=|_%u% Gte 0)
0 0 o7 0 0 o,

it

Furthermore, if the longitudinal conductivity is much greater than the
transverse conductivity, then the conductivity tensor has the even simpler
form

o o 0 0,/2 —0,/2 0
off o 0|=|-0,/2 /2 O] (5)

0 0 o7 0 0 o,
In this case, the off-diagonal terms are as large as the diagonal terms.

In a similar way the interstitial conductivity tensor &, can be evaluated
from the interstitial longitudinal (o,,) and transverse (o,,) conductivities,
and the angle x, between p and the interstitial fiber direction. For the
remainder of this paper, we will only consider the case in which the
intracellular and interstitial domains have the same longitudinal direction,
ie x;=X,=Xx

Once the conductivity tensors describing the tissue are known, we can
calculate the volume conducted electric potential and current. The funda-
mental equations governing the electric potential are the equation of con-
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tinuity of current

v-(J,+3)=0, —1/2<z<i/2 (6)
v-J =0, |z1>1/2, @)
and Ohm’s law
J,=6E, (8)
J,=6,E,, (9
J,=0E,, : (10)

where E represents the electric field, J the current density, and the subscripts
i, 0, and e signify the intracellular, interstitial, and external bath ‘volumes.
These equations can be combined with the definition of the electric field in
terms of the potential, '

E=-vo, : (11)
the assumption of cylindrical ysym’metry, and the assumption that the con-
ductivity tensors are independent of position to yield two partial differential

equations describing the intracellular, interstitial, and external potentials ®,,
&, and O,:

1 49 J
s [Pa—p(ﬂ."pq’i + Uf"‘l’o)]

62 ZZ¢ ZZQ — 1 l 1
+F(Ui ;+ o, o)_O’ —3<z<%, (12)
Ve, =0, 2| >%. (13)

The boundary conditions at the surface of the tissue, |z|=1/2, are [32]
JE+ T =J;, (14)
and
o =0, (15)

Equation (12) is quite complicated, but can be made tractable using a few
algebraic manipulations. Following the technique given in [32], we make a
change of variable ' '

z*=Xz, (16)

. [P + oP? s
A=,/ 22 17
TEET day an

where
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and introduce two new potentials ¥ and @, , which are linear combinations
of @, and O,
Qm(p)?Qi(z,p)—Qa(z,p), (18)

o
‘I’(Z,p)=q>i(z,p)+mq)o(z,p). (19)

Equation (18) is the usual definition of the transmembrane potential, which
we assume is known. Note that @, is assumed to be a function only of p,
consistent with our assumption of radial propagation of the action potential.
- Equation (19) defines ¥. We can invert the above two equations to obtain

¢o(z,p)=;ﬁ;§'§3;[iI(z,p)—¢m(p)], (20
8,(2,0) = ags | V() + 25 0u(0)|. (D)

Making these substitutions into:Equation (12), and using the fact that o,
independent of z, we find that '

V*2¥(z*,p) =0, -l/2<z<l/2, EERR (@)

which is Laplace’s equation in the (z*, p) coordinate system The boundary
conditions of Equations (14) and (15) become

v .,6, 00, 7 ;
9z~ o 3z ()
and
G'Pp+oopp o [ "
Y=0n+ G 2. o (29

Our problem is now reduced to solving Laplace’s equation [Equations (13)
and (22)] with the appropriate boundary conditions [Equations (23) and
(24)]. Therefore, if we are given the tissue ‘parameters and the transmem-
brane potential as a function of p, we can derive analytic expressions for the
potentials in' the intracellular; interstitial, and external volumes. This deriva-
tion is outlined in Appendix A. ;

The most significant result of this calculatlon is that o”" and a"" do not
appear .in any ‘of the equations governing ‘the: intracellular, interstitial, or
external potentials. The electric'potential is independent of the off-diagonal
-conductivity terms, so it is not affected by the spiraling geomietry of the
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tissue. However, o ‘and o do appear in the expressions for the current
density,

3, a0, 3,
J=—0af RS p— o’ —370-—0,. TR (25)
30, aq>o .90,
o = o ap - ogp 0 o az (26)
9, 30, ,
Je == Gea—p =0, 3. 3z z. - N ’ (27)

Thus, there are currents circling around the apex in the 8-direction, although
there are no potential gradients in that direction. This result is due entirely
to the spiral geometry of the fibers, expressed mathematically by the
off-diagonal terms in the conductivity tensors, and leads directly to the
production of electrically silent magnetic fields [1].

The law of Biot and Savart governs the behavior of the magnetic field.
This equation can be solved analytically for the magnetic field B produced at
the apex of the heart in terms of the transmembrane potential, as is done in
Appendix B. The result shows that there are components of the magnetic
field in all three directions, and that the p and z components both depend
on o and o’. Thus, the off-diagonal components of the conductivity tensor
appear in the expressions for the magnetic field, but do not appear in the
expressions for the electrical potential. We term the p and z components of
the magnetic field the electrically silent components; they contain new infor-
mation that is not present in the electric potential.

RESULTS

To calculate the potential and magnetic field from the expressions in
Appendices A and B, we must assign specific values to the parameters
describing the cardiac tissue and action potential. We use a parametrization
based on Plonsey and Barr’s representation of the transmembrane potential
[33]

'i’,g(p‘ I; [1+tanh( £ (Po ))] (28

shown in- Flgure 4, where ¥, is the a.mplltude of the action potential
(110 mV), ¥, is its maximum rate of rise (200 V/s), and u is its
propagation velocity (0.30 m/s):[34]. This transmembrane potential repre-
sents a circular activation wavefront propagating radially outward from the
apex of the heart, as if a stimulating electrode had been placed at the vortex. -
The wavefront will have a radius - p,; and a width (10 to 90% of maximum)
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FiG. 4. The transmembrane potential used in all our computations, calculated from
Equation (28) with V,, =110 mV, Viax = 200 V/s, u= 0.3 m/s, and py =1 mm.

on the order of uV,, / V..., Which in our case is 0.17 mm. We describe the
electrical properties of the tissue parallel and transverse to the local fiber
direction by using the intracellular and interstitial conductivities measured
by Clerc [35]): o, =017, a,=0.62, o,=0019, and o,,=0.24 S/m. The
components of the conductivity tensors can be calculated from Clerc’s data
and the angle x between the p-direction and the fiber direction, using Eq.
(3). We assume that the tissue has a thickness / of 1 mm.

Figure 5 illustrates the current and magnetic-field lines produced by the
action potential. In Figure 5(a), the current lines (dark bands) and
magnetic-field lines (light bands) are those that would exist if there were no
electrically silent components of the magnetic field, i.e. if the conductivity
tensors were diagonal. The azimuthal component of the current due to the
off-diagonal components of the-conductivity tensors is shown in Figure 5(b),
along with the resulting electrically silent components of the magnetic field.
To a first approximation, this is just the magnetic field of a circular current
loop of radius p,. Figure 5(c), (d), and (e) show the field lines for the total
magnetic field, which is the sum of both the silent and nonsilent compo-
nents. In Figure 5(c) the electrically detectable components are much smaller
than the silent components, while in Figure 5(d) and (e) the electrically
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(b

" Fi6. 5. (a) The current (dark bands) and magnetic-field (light bands) lines created by
" an action potential propagating outward from thé apex of ‘the heart 'if' no off-diagonal
terms are present in the conductivity tensors. (b) The azimuthal component of the. current
and the electrically silent components of the magnetic field produced by off-diagonal terms
in the conductivity. tensor. (c), (d), (¢) The total magnetic field at the apex of the heart, for
three. cases ‘in. which the contribution . of the electrically detectable component of the
. magnetic field is made increasingly larger, This figure is only qualitatively correct; the field
lines may not be quantitatively accurate. C B ’
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" Fi6. 5. Continued.

-detectable components are made progressively larger. Figure 5(¢) is particu-
- larly interesting because the magnetic field lines spiral into the apex.in much
. the same way as do the. fibers themselves. We stress that all the’ ‘drawings in

Figure 5 are qualitative and are intended as an- a1d in developmg intuition.
- They are not quantitatively accurate, -

The calculated extracellular potential and the ax1a1 (z), rad1a1 (p), and
az.lmuthal 9 components of the magnetic field are shown as functions of p
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F1G. 5. Continued.

in Figure 6, for z =1/2 = 0.5 mm (on the surface of the tissue), p, =1 mm,
and x =45°. Our calculated extracellular potential, Figure 6(a), is similar
to those calculated by Spach et al. [10, Figure 8(a)] and Roberge et al
[36, Figure 5(a)]. As the action potential propagates outward (p, becomes
larger), the extracellular potential will become biphasic, with ®,(p =0) = 0.
Unlike other calculations [10,36], our extracellular potentials are indepen-
dent of the direction, since we are considering only radial propagation in
cylindrically symmetric tissue.

The azimuthal component of the magnetlc field, Figure 6(b), is indepen-
dent of the off-diagonal components of the conductivity tensor and would
therefore exist without the spiraling fiber geometry. It is monophasic and
has its maximum amplitude at p = p,. The amplitude of the signal is large
(=3 nT) compared to most measured biomagnetic signals, since we calcu-
late B? at the surface of the tissue, z =/ /2. The radial and axial components
of the magnetic field depend on the off-diagonal terms of the conductivity
tensor. The electrically silent radial:.component, Figure 6(c), has a shape that
is similar to the azimuthal component, with a maximum at p = p,. The"
amplitude of B® is 79% as large as B’ Clearly the electrically silent -
components of B are not small perturbations on a signal that otherwise is
electrically detectable. The axial component, Figure 6(d), is a biphasic signal,
with its maximum amplitude at p = 0 and a second phase that'is much
smaller in amplitude than the first. The amplitude of B* is 58% of B’. The z
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Fi1G. 6. The (a) external potential, and the (b) azimuthal, (¢) radial, and (d) axial
components of the magnetic field, calculated for z = 0.5 mm, x = 45°, and' py =1 mm.
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and p components of the magnetic field are similar to those produced by a
uniform ring of current of radius.p,. In fact, the analytic:expression for the
. magnetic field due to a ring of current is s1m1lar to the eXpressmns ‘we have
derived [37, Problem 5.4].

Figure 7 shows the amplitude of the three componmts of the magnetic
field as a function of z. Note that the axial component falls off more slowly -
than the radial or azimuthal components, so that at z =2 mm B?* has nearly -
twice the amplitude of B? or B?. Far from the tissue (where the distance:
from the field point to the tissue is much larger than p,) only the lowest-order
term in a multipole expansion of the magnetic field will be important. Due
to the cylindrical symmetry, the magnetic moment of: this current distribu-
tion must lie in the z-direction. It is produced by the 6-component of the .
current density, and goes to zero if the conductivity tensors are diagonal.
Thus, the magnetic moment generates a dipole magnetic field that is electri-
cally silent. Far from the tissue, the electrically silent dipole field completely -

1.0

(T

0.1+

0.3 0.507 1 2 3
z (mm)

FiG. 7. The peak amplitude of the azimuthal (#), radial (p), and axial (z) components
of the magnetic field as a function of z, calculated for x = 45° and py =1 mm.
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..dominates the higher-order contributions from sources that are electrically
. detectable ‘This surprising result is due to the cylindrical symmetry of our
~ model. If the acuon-potentlal propagation is not cylindrically symmetric (for
instance, if in one direction the action potential fails to propagate because it
reaches the edge of the tissue), then sources that are electrically detectable
also produce a magnetlc moment. Nevertheless, for our cylindrically sym-
metric case, when the magnetic field is measured far from the tissue, only the
electrically silent components will be detected. .
_As the angle x between the radial and local fiber directions goes to zero
~ or 90°, the conductmty tensor becomes diagonal, so B* and B® go to zero.
~ We can now ask for what x it will be easiest to detect the electrically silent
. components of the magnetic field, and therefore extract new information.
Figure 8 shows a plot of the ratio of the amplitude of the axial and the
anmuthal components of the magnetic field versus x. The curve reaches a
maxjmum at about 70°, at which angle B?/B? = 0.6. Note that the maxi-
mum in this curve is not sharp, indicating that there is a wide range of
x-values that will produce large electrically silent components of the mag-
netic field. From Figure 1, x is approximately 40°. The amplitude of the
magnetic field will also depend on radius of the propagating action potential,
po- Figure 9 shows the ratio B?/B® at different values of p,. The ratio
reaches a maximum at p, =1 mm. Thus the relative contributions of the
terms that are electrically silent and electrically detectable change as the
action potential propagates away from the site of stimulation.

0.6 ¢
Bz 0.4
8®
0.2 |
0 ) n A I A i A L I

0 . .20 40 60 80
‘ X - (Degrees)
F1G. 8. The ratio of the amp]itude of the axial component of the magnetic field to the

.amplitude of the azimuthal component as a function of x, the angle between the radial and
local f1ber directions.
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- *F1G6. 9. The ratio of the amplitude of the axial component of the magnetic field to the
amplitude of the azimuthal component as a function of p,, the radius of the radially
propagating transmembrane potential, calculated for z = 0.5 mm and x = 45°.

DISCUSSION

The magnetic field of a propagating action potential can in principle
contain information:about cardiac tissue that is not obtainable from mea-
surements of the intracellular and extracellular action potentials. With
certain tissue geometries, the magnetic field is affected by components of the
current that are electrically silent. In this analysis these cutrents depend on
the off-diagonal components of the conductivity tensors, whereas the electri-
cally detectable currents are determined solely by the diagonal components.
Hence the magnetic field is determined by all elements of the conductivity
tensors, whereas the electric field is deteérmined only by the diagonal ele-
ments. If the off-diagonal terms affect the distribution of action currents,
then these effects will be manifested int the magnetic field but not in the
electric potential.
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This paper extends our analytic treatment of an anisotropic bidomain to
two-dimensional propagation in tissue with a spiraling fiber geometry. To
obtain analytic expressions for the potential and magnetic field, we require
that the local fiber direction make a constant angle x with the p-direction.

"This is a very restrictive assumption, and will not in general be valid. The
justification for making this assumption is that it leads to a conductivity
tensor that is independent of position (homogeneous) when expressed in
cylindrical coordinates. Fibers which make a constant angle with the radial
direction trace out a logarithmic spiral, first discussed by Descartes in 1638
[38), and defined by the equation p = ¢?°°*x [39]. The curve is asymptotic at
the origin, so that it cannot be used to model accurately the fiber geometry
exactly at the apex, p = 0. However, when p,, the radius of the wavefront, is
much larger than uV,, / Vax, the width of the wavefront (0.17 mm for our
parameters), then the largest currents occur within the depolarization wave-
front. If we pick x so that it matches the observed fiber direction in the
depolarization front, the behavior of the fibers at p = 0 should not seriously
affect our calculations.

As is always the case in electrophysiological modeling, the homogeneous
problem can be solved easily, but the inhomogeneous problem better repre-
sents the biological tissue, in which case x is not constant, so §; and &,
depend on p, 8, and :z. Although introduction of an inhomogeneous
conductivity would probably make an analytic solution to the problem
impossible, numerical techniques such as finite-element calculations can
handle the inhomogeneous problem [17,40,41]. These numerical techniques
would be well suited for the extension of this analysis to three-dimensional
wavefronts in the whole heart. There exist accurate descriptions of the fiber
geometry [27] and propagation path [25] in the human heart, and it may be
that numerical calculations based on ideas presented here could accurately
model the human ECG and MCG.

It is the spiraling fiber geometry that leads to electrically silent magnetic
fields, and in this particular case we expressed that fiber geometry mathe-
matically using off-diagonal terms in the conductivity tensors. However, the
conductivity tensors may or may not be diagonal, depending on the coordi-
nate system in which they are expressed. A parallel ‘and- uniform fiber
geometry (as assumed by Spach et al. [10], Plonsey and Barr [33], and
Sepulveda and Wikswo [17]), gives rise to a conductivity tensor that is not -
diagonal when expressed in cylindrical coordinates, but this fiber geometry
does not give rise to electrically silent magnetic fields: While no truly new
information is present in-the magnetic field in this restrictive geometry,
Sepulveda and Wikswo [17] show that the electric and magnetic fields have
different sensitivities to each diagonal component of the intracellular and
extracellular conductivity tensors and that combined electric and magnetic
measurements of the activation potentials and currents may be required for
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unique determination of these conductivities. It is the spiraling or helical
fiber geometry that is crucial for producing new information in the magnetic
field. Thus, it is not surprising that recent experiments using one-dimen-
sional strands of cardiac tissue [18,42,43] did not find new information in
the magnetic field, since these investigators intentionally used preparations
having uniform fiber geometries.

Based on our study of the electric and magnetic fields produced by a
nerve axon [44,45], it should be possible to extend the present analysis to
solve the inverse problem of determining the conductivity tensors from
combined measurements of the electric and magnetic fields. In principle the
four-electrode technique for impedance measurement could also be used to
determine the conductivity tensors, since for a small patch of tissue the
tensors are diagonal when expressed in a coordinate system aligned with the
local fiber axis. However, this would require using electrode separations that
are small relative to the distance over which the local fiber direction
significantly changes, which is on the order of a millimeter. To separate the
intracellular and interstitial conductivities would require using several elec-
trode spacings [46}, and four-electrode measurements in an anisotropic -
bidomain have only been theoretically analyzed for the restrictive case of
tissue in the steady state with equal anisotropy ratios [46]. Thus, combined
electric and magnetic measurements may provide a valuable alternative. to
the four-electrode technique for determining the properties of cardiac tissue
with spiraling fiber geometry.

What is the significance of this model of the apex of the heart in light of
the controversy over the relative information content of the ECG and MCG?
First, this model, along with that in Reference [1], demonstrate that electri-
cally silent magnetic fields can be produced by tissues with spiraling or
helical fiber geometries. It provides a mechanism for producing current loops
like those hypothesized by Wikswo and Barach [6]. Perhaps the most
important aspect of this model is that it can be verified experimentally,
providing an unambiguous test for the presence of new information in
biomagnetic fields. In addition, measurement of the electrically silent mag-
netic field near exposed cardiac tissue provides a unique means to determine
the off-diagonal elements of the tissue conductivity tensors and to assess the
effect that the fiber geometry producing these terms has on cardiac activa-
tion. Once this model is confirmed experimentally, the question will no
longer be whether new information can exist in the biomagnetic field, but
instead whether it does exist in the MCG of the normal or pathological
heart. This question is much more difficult to answer, since the fiber
geometry [27] and path of the depolarization wavefront [25] are much more
complex in the intact human heart, and the MCG is typically recorded at the
surface of the chest, several centimeters from the heart. The fact that
electrically silent and electrically detectable magnetic fields exhibit different
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falloff with distance and very different field patterns might be an important
factor to consider in the magnetic localization of ectopic foci and other
aberrant electrical activity propagating outward from highly localized activa-
tion sites.

APPENDIX A. DERIVATION OF THE EQUATIONS FOR THE
ELECTRIC POTENTIAL

In this appendix we will derive expressions for the potentials ®,, ®,, and
®, in terms of the transmembrane potential ®,. We can express the
transmembrane potential as an expansion of J, Bessel functions for different
values of the spatial frequency k:

0,(0) =[O hke) &, (D

We can use the orthogonality of Bessel functions [37] to invert Equation
(Al), finding that ‘ ‘

(k) =kf0°°<1>m(p)Jo(kp)pdp. (A

Since ¥(Az,p) and ®,(z, p) both are solutions to Laplace’s equation, we
can write themi as expansions in terms of the eigenfunctions of Laplace’s
equation in a cylindrical coordinate system, i.e. Bessel functions in p and
exponentials in z. Using the relationships between exponential and hyper-
bolic functions, symmetry arguments, and constraints on the behavior of the
potential at-the origin, we find the expansions reduce to

¥(z,p) =f0°°A(k)Jo(kp)cosh()\kz) dk, —1/2<z<1/2, (A3)

0]

e

(z, )={ B(k)Jy(kp)e *2dk, z>1/2, (Ad)

JeB(K) Jo(kp)et: dk, z<—1/2,

where A(k) and B(k) are unknown functions to be determined by the
boundary conditions and X is defined in Equation (17). We will find it
useful to define the Fouriér transforms y(z,k), ¢,(z,k), ¢,(z,k), and
é,(z, k) in the same way as we defined ¢,,(k) in Eq. (Al). Thus, from Egs.
(A3) and (A4) we find that '

W(z,k) = A(k)cosh(Akz), —1/2<z<i/2, - (AS)
and

B(k)e ™ =, z>1/2,

¢,(z, k) ={B(k)e’", i<—1/2.

' i(A6)



APEX OF THE HEART B 213

After applying the boundary conditions given in Egs. (23) and (24) and
doing some algebra, we find that ¥ and ¢, can be expressed in terms of ¢,
as

_ cosh(Akz) '
¥(2.0) = qtak ) Ok oK) —1/2<z<1/2, (AT)
and
e-kz
‘ W‘P w(k), z2>1/2,
¢.(2,k) = e (A8)
_mqsm(k) z<—1/2,
where
PP 4 goP
(A1) =2y (koA D), (A9)
o,-‘"’+a,f"\ 1
Bk, A1) =1+ 2 s, (A10)
and
o, h(Akl/2
vk 1) =hs SR (A1)
We can now solve for ¢; and ¢, using Equations (20) and (21):
of cosh(Akz)
¢ (2,k) = ""+o""[cosh(>\k1/2)/3(k N ]"’m(")’ (A12)
cosh(Akz)

P oop
éi(z,k) = o,p+a,,,, 6, (k). (A13)

cosh(Akl/2) B(k, A, 1) i

Equations (A8), (Al2), and (Al3) provide our final result, the potentlal in
each domam in terms of the transmembrane potential.

APPENDIX B. DERIVATION OF THE EQUATIONS FOR THE
MAGNETIC FIELD

The magnetic field is calculated from the current density using the law of
Biot and Savart, which can be written as [45]

B(r) = 4o {"rlx:‘ds f;le } | (B1)
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There are two terms in the equation, a surface (s) and a volume (v) integral.
However, there are three components to the magnetic field in the radial (p),
azimuthal (@), and axial (z) directions, and three regions over which to
integrate, intracellular (i), interstitial (o), and external (e), so that there are
actually eighteen separate integrals to evaluate. Seven of these integrals
vanish, so there are only eleven left, listed in Table 1. We outline the steps
required to evaluate two of these integrals; the rest follow analogously.

As our example, we will integrate the cross product of the current density
and the surface normal in the intracellular volume over the surfaces z =
+1/2, calculating the magnetic field at a point outside the tissue, z > /2.
We let 6 =0, which leads to no loss of generality, since the fields are all
cylindrically symmetric. The unit normal to the surface z=1/2 is z. It
follows that

3,
J xn=(0P*8 - of*p) 7 (B2)

Using the fact that the derivative of J; is — J;, we can express d®, /dp as

aa;il:i=_./(;w¢i(z’w)WJl(wP) aw. (B3)

The function 1/|r—r| can be rewritten in terms of trigonometric functions
in 0, Bessel functions in p, and exponential functions in z, as [37, Problem
3.14]

1 00
e dke_k(z>_z<)
=R

X[Jo(kP)Jo(kP;)‘z i cosmo’Jm(kp)Jm(kp’)], (B4)

m=1

where z, and z_ are the larger and smaller of the two variables z and z’.
In our case, z_ =1/2 and z, =:z. Combining Equations (B2), (B3), and
(B4), we can rewrite the surface integral in Equation (B1) as

Bi,s(z’ P)~
= b j(’) © fo 2"{(0,?ppr_ o8 fo " 6:(1/2, w) why(wp') dw}

m=1

X{fooe"”e"’/z[Jo(kp)Jo(kp’)—Z Y cosm8'J,(kp)J,(kp’) dk}
0

X p’dp’ db’. (BS)
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B.l:s(z,p)gpoqp%”’a” f dk[ﬂ(k X, l) ] (52') m(k)Jl(kp)s_k‘

(B11)

B.f:(z,p)-—uo-;,,,—"_%m pe dk[p(k "t ]sxnh(’—cz-)¢m(k)ll(kp)e"", (B12)

3 of? 1 kl
£ol20) = ~ Moy =33 oy o f""W“““( )

sinh( kAl/2) cosh(kl/2) L
X.[)\sinh(kl/Z)cosh(k)\l/Z) N ‘]%(")Jl(’sp)e. k2,

(] X o,PP zz po
Bi.v(z’p)=—“‘01__xz opp+upp(0i -0 )
i

ki\ [ sish(kAJ/2)cosh(kl/2) '
Js d"ﬁ(kx ) ‘““( )[)\smh(kl/2)cosh(k>\l/2) 1]

X (k) Ji (kp)e™ "7,

of? o

1
z -y —
Bf,(z,p) L PR of + otﬁ'w"'

Acosh(kl/2)sinh(kAl/2)] afp  (1-N
Xf {p(ku)[l‘ cosh( kl/2) sinh( ) 1-x)

sinh(kl,/2)cosh(kAl/2) | ¥ oP® Cosh(AkI,/2)

XSmh( )¢m(k)Jo(kp)e_"’

of 00 1 [k
B,‘,’,,(z,p)-poma:’fo dk[p(k—)‘i)—l]¢m(k)smh(—2—)ll(kp)e kz,
k

» aof? ki)
B (2, P)"F"ol x‘vm f dkﬁ(k }‘ 1)¢m(k)smh '2_)

BS — — pe— o ,. * ak k (—)J kp)e~*,
.5 (2,9) = 'Loo‘pp+0pp 0 B(k }‘ 1) 1] ¢, ( )s 2 1( p)e .

cosh(kl/2)sinh(kAi/2) e
Xsinh(kl/2) cosh(kAL/2) 1] Jl(kP)C..k y

N N P
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x [ dk cosh(k1/2y)‘sinh(k};i‘/2‘) _ ] ‘
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(13'13)

(B14)

)

(B15)
(B16)

(B17)

- (B18)

(B19)

x[“dk{ 1 1. Mcosh(kl/2)sinh(kAl/2) ] 1-x }
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The unit vectors p’ and 8’ can be expressed in terms of the Cartesian unit
vectors x and y by -
0'=—xsinf’+ycosb’, , (B6)
p’=xcosf’+ysinf’. (B7)
When we integrate over 8’ in Equation (B5), all contributions to p and 9 ‘
containing sin @’ vanish, and the only term in the sum over m which survives

is m =1. Using these facts and rearranging the order of integration, we find
that

Bi’_‘.(z,P) 2,"0( 0Px oppy)f dwf dk¢(1/2 w)le(kp)e_kz ki/2
Xfo J(wp") I (kp’)p’ dp’. (B8)
We now use the orthogonality relationship [37]
1 0 -
Z8(k—w)= fo pJy(kp) Jy(wp) dp, (B9)

to simplify Eq. (B8) to
Bioler8) =dpalofra=of"y) [ A4 1720 H(0ke) 4570 (B10)
0 : .

If we now do the same integral over the surface z=—1/2, add the two
results, substitute for ¢,(//2,k) from Equation (Al6), and note that at
0=0, x=p, and y =0, we get Equations (B11) and (B12) in Table 1.

APPENDIX C. COMPUTATIONAL ASPECTS OF
THE CALCULATION

The expressions in appendices A and B all have the general form .
[o<]
[ 1(2 %) (k) Joa (k) dk, (c1)

where f(z,k) depends on exactly which potential or component of the
magnetic field is desired. The first step in our calculation is to compute
¢,,(k) from ®,(p) using Equation (A2). We can consider this step as a
transformation of the transmembrane potential from a function of p to a
function of k, analogous to a Fourier transformation but using Bessel
instead of sinusoidal functions. We call k the spatial frequency; although it
is not a frequency in the same sense as it would be in a Fourier transforma-
tion. Figure 10(a) shows ¢,,(k) calculated from the transmembrane potential
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so}ﬂ

P (k)

(mV-mm) 20

A .| | , B ‘
¢§(k) 0 b [\ f\ /-\v"\v‘ﬁ-
(mV-mm) W 1 U M o ysovlt(” (1/mm)

-2 H:

-4 }

-s-U' o
(b)

F1e. 10. The transform of (a) the transmembrane potential and (b) the external
potential calculated at z = 0.5 mm for x = 45° and p; =1 mm.
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that is shown in Figure 4. We next multiply ¢, (k) by the filter function
f(z,k) to arrive at the potential or magnetic field in transform space. In
Figure 10(b) we show the transform of the external potential, ¢,(z, k), at
z=1/2 obtained by multiplying ¢,,(k) by the filter function defined by
Equation (All). This product is then transformed back into a function of p,
using an equation analogous to Equation (Al) for the potential and the axial
component of the magnetic field, or using an equation like Equation (Al)
with J, replaced by J; for the radial and azimuthal components (see Table
1). For example, Figure 6(a) shows the inverse transform of the function
¢.(z, k) shown in Figure 10(b).

This procedure is reminiscent of the calculation of the potential and
magnetic field of a nerve axon [45]. In that case the transmembrane potential
®,, was a function of z, while here it is a function of p. For the nerve, we
transformed ®,,(z) to ¢,(k) using a Fourier transform and the filter
functions contained modified Bessel functions such as I,(ka) and K,(kp),
where a was the radius of the axon. For our calculation, we transformed
®,.(p) to ¢, (k) using a Bessel-function transform, and the filter functions
contained exponential functions such as cosh(k/) and e~*?, where / is the
width of the slab of tissue.

One important difference between the two calculations is that there exist
efficient fast-Fourier-transform (FFT) algorithms for performing Fourier
transforms, but we know of no analogous “fast” algorithm for computing
Bessel-function transforms. Therefore, we calculated the integrals in Equa-
© tions (Al) and (A2) by discretizing the functions, limiting the range of k or
p values over which we integrate, and then using a rectangular quadrature
algorithm to approximate the integral. We typically used 1000 evenly spaced
values of p, separated by the increment 0.002 mm, and 1000 values of k,
separated by 0.05 mm~'. The Bessel functions were calculated using IMSL
routines [47). One advantage of Bessel transforms over Fourier transforms is
that the Bessel transform contains only real numbers, while the Fourier
transform is generally complex.

This work was supported by the Office of Naval Research under Contract
NO00014-82-K-0107 and the American Heart Association. Computer time was
provided by the College of Arts and Science, Vanderbilt University.
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