The Living State Physics Group has spawned several interconnected research programs that are described on several newer web pages. We maintain the LSP pages primarily to support existing links and for archival access. For more recent results, please consult the following pages:

The Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE)
http://www.vanderbilt.edu/viibre/

Max Delbruck at Vanderbilt:
http://www.vanderbilt.edu/delbruck/

Franz Baudenbacher Publications:
http://www.vanderbilt.edu/viibre/baudenbacher-pubs.php

Alan Bradshaw and the Gastrointestinal SQUID Technology Laboratory:
http://www.vanderbilt.edu/biomag
http://www.vanderbilt.edu/biomag/publications.htm

Shane Hutson and the Biophotonics Lab:
http://people.vanderbilt.edu/~shane.hutson/
http://people.vanderbilt.edu/~shane.hutson/research.htm

John Wikswo Publications:
http://www.vanderbilt.edu/viibre/wikswo-pubs.php


"We now realize that the phenomena of chemical interactions, and, ultimately life itself, are to be understood in terms of electromagnetism." --Richard P. Feynman

How SQUIDs Work

Magnetic Microscope Image of ALH84001 (left) taken with the Vanderbilt Ultra High Resolution Scanning SQUID Microscope (right).
News-Press
Corrosion   -  Martian meteorite
Link to 'SQUIDS', an introduction to the principles, design and applications of SQUID Magnetometers At Vanderbilt University, Living State Physics merges research at the forefront of physics with exciting and significant biomedical investigations. It is an interdisciplinary field that draws upon the tools, methods, and theories of physics, biology, engineering, and medicine, as well as computational physics and non-linear dynamics, to increase our understanding of biological systems and phenomena.

Physicists have already made significant contributions to medicine and biology, primarily in medical physics, which emphasizes the application of radiation to diagnosis, imaging, and therapy; and in biophysics, which is concerned largely with the properties and behavior of biological molecules. There are, however, innumerable, unexplored biomedical applications of physics. Hence, the term Living State Physics is both an excellent name for this broad field and an appropriate parallel to the more familiar field of solid state physics, which applies numerous techniques and theories to study solids. Living State Physics elucidates, as no other discipline does, living functions and mechanisms, biological states, and pathological conditions.

Just as the turn of this century brought rewarding and advancing applications of chemistry to the life sciences, today medicine and biology are ripe for the wider application of physics. Pharmacology, ophthalmology, neurology, cardiology, surgery, physical therapy, and audiology are examples of medical specialties that can benefit from new understandings gained through Living State Physics. Apart from contributing to progress in biology and medicine, the knowledge that flows from Living State Physics simultaneously advances the physical sciences, particularly polymer physics, molecular dynamics, and solid state physics, as well as engineering fields such as electronics and materials science.

The Living State Physics Group at Vanderbilt utilizes a three-pronged approach to solving problems of biomedical interest: the development of new instrumentation that ranges from high-resolution scanning superconducting magnetometers and high-speed fluorescence imaging systems to free electron lasers; the use of these instruments to make fundamental measurements on biological systems; and the development of analytical and numerical models that probe the depth of understanding of both the relevant biophysical mechanisms and the theories that describe them.


Send questions and comments to:
LSP WebMaster

E-shop