Available Technologies

ADDITIONAL FILTERS

295 available technologies

Human Monoclonal Antibodies to Infectious Diseases

Using human B cell hybridoma creation, and antibody engineering technologies, Dr. James E Crowe Jr.'s laboratory has developed an array of antibodies from full length human antibodies to Fab fragments and diabodies. Many of these antibodies are ready for a cooperate partner who can further develop these antibodies into biologic herapeutics. The table below is a sample of the antibodies they are currently researching and have available. In addition to these areas of research, Dr. Crowe is actively seeking collaborative opportunities to identify new interesting targets for future antibody engineering projects.

Molecular Profiles for Subtyping Triple Negative Breast Cancer

Personalized medicine is at the forefront of medical news and specialized diagnostics that can align patients with the correct treatment are the key to this type of medicine. Jennifer Pietenpol and colleagues have performed extensive research and discovered that triple negative breast cancer (TNBC) is a heterogeneous disease with at least six subtypes. These subtypes have differing biological behaviors and sensitivities to known therapeutics. Diagnostic assays will help guide personalized and more effective therapy.

Serotonin 2B Receptor Antagonism to Prevent Heart Valve Disease

Vanderbilt researchers have developed a novel approach that could potentially prevent or slow the progression of DAVD at its earliest possible stages so as to greatly increase patient quality of life. The initial mechanism which triggers fibrotic lesion formation occurs by phenotypic modulation of the aortic valve interstitial cells (AVICs) to the constitutive myofibroblast phenotype, producing significant amounts of extracellular matrix, similar to fibrotic remodeling in other tissues. Thus, desired goal to prevent DAVD is to control the phenotype modulation by specifically inhibiting molecular mechanisms that are known to cause activation of AVICs. This is achieved by inhibiting transforming growth factor-

Assays to detect Cox-2 activity for determining treatment effectiveness for a variety of inflammatory and cancerous diseases

This invention identifies COX-2 metabolites as markers for a variety of inflammatory, neurodegenerative and cancerous diseases, and it provides a means for determining and monitoring levels of metabolites of COX-2 from patient samples. It may also be used to augment information from imaging and other diagnostic and disease progression monitoring modalities. In addition, the technology provides a means for testing activity of agonists or antagonists that can aid in the design of drugs that reduce effects of harmful prostaglandins with reduced side effects.

Multisubstrate Inhibitors of Histone Acetylation Increase the Cytotoxicity of Chemotherapeutic Agents

Inhibitors of histone acetylation may constitute a novel class of potent therapy sensitizers applicable to a broad range of conventional cancer treatments.

Transcend: Qualitative Diagnosis System & Method

Transcend is a model-based diagnosis system for fault detection and isolation of abrupt faults in complex to very complex engineered systems. It applies models of dynamic system behavior to obtain accurate predictions for measured transients and compares predictions with actual observations to distill the true cause for the faulty behavior. To successfully perform diagnosis, Transcend needs a dynamic model of the system.

Direct Laser and Ultraviolet Lithography of Porous Silicon Photonic Crystal Devices

We have developed a technique to process photolithographically porous silicon heterostructures and photonic crystal architectures, using laser and ultraviolet light exposure and a subsequent alcoholic bath treatment. This technique would be the first method to process directly the optical properties of porous silicon multilayers, heterostructures, and photonic crystal architectures.

Porous Silicon Membrane Waveguide Biosensor

The porous silicon membrane waveguide is a low-cost, high sensitivity sensor for the detection of biological and chemical materials. It is cheaper and more sensitive than commercial fiber optic and SPR sensors for low molecular weight species.

Motion Generator to Transform Linear into Nutation Motion

A nutation motion generator which transforms linear motion into nutation motion. The device employs a spherical, four-bar linkage mechanism. Three four-bar linkage mechanisms are sandwiched between a stationary support surface and a drive plate and arranged at 120-degree intervals about the support surface. Each four-bar linkage mechanism is constructed of four planar sections which are hinged along their edges, the four hinged planar sections being essentially triangular in shape so that they would join at a point in the center of the device if they extended to the apex of their respective triangles. A universal joint is located at the center of the device to provide stability. The four-bar linkage mechanism can be collapsed to a substantially flatten configuration, opened and then collapsed to a substantially flattened configuration at an angle 90-degree. to that of the first flattened configuration. Since each four-bar linkage mechanism has this capacity, the drive plate can be positioned at any angle relative to the support surface. The movement of the four-bar linkage mechanisms is generated by an actuator consisting of three reciprocal-motion drivers connected between the hinged edges of adjacent four-bar linkage mechanisms which are driven by a controlled electric pulse. The reciprocal-motion drivers, for micro applications, are piezoceramic stacks. If the drive plate is circular and its outer perimeter is fitted with beveled gear teeth, a second gear (the "driven" gear), with a smaller diameter than the drive gear, can be meshed with the drive gear to drive the driven gear at a reduced speed and at a relatively high torque. The three-dimensional motion of the mechanism makes the device very compact, and amplification is improved as the device is made flatter. In addition, the interaction between the nutating element and the top of the support surface creates a very large gear reduction.

Split-Tube Flexure

This application describes the design of the split-tube flexure, a unique precision revolute joint that exhibits a considerably larger range of motion and significantly better multi-axis revolute joint characteristics than a conventional flexure. The development of this joint enables the implementation of spatially-loaded revolute joint-based precision machines with well-behaved kinematic and dynamic characteristics and without the backlash and stick-slip behavior that would otherwise prevent precision machine control.

Method and Apparatus for High Resolution Imaging of Samples Using Superconducting Quantum Interference Devices

A method and apparatus performs high resolution imaging. The apparatus includes a low temperature SQUID sensor mounted in close proximity to a dewar thin window. A radiation shield has an extension surrounding the detection coil.

Combined Raman Spectroscopy- Optical Coherence Tomography (RS-OCT)

An apparatus for evaluating a target of interest of a living subject. In one embodiment, the apparatus has a first light source for generating a broadband light, a second light source for generating a monochromatic light, a beamsplitter optically coupled to the first light source for receiving the broadband light and splitting it into a reference light and a sample light, a reference arm optically coupled to the beamsplitter for receiving the reference light and returning it into the beamsplitter, and a probe having a working end placed proximal to a target of interest of a living subject, optically coupled to the beamsplitter and the second light source for receiving the sample light and the monochromatic light, delivering them from the working end to the target of interest, collecting from the working end a backscattering light and a Raman scattering light that are obtained from interaction of the sample light and the monochromatic light with the target of interest, respectively, and returning the backscattering light into the beamsplitter so as to generate an interference signal between the returned backscattering light and the returned reference light in the beamsplitter.

Featured Video

CTTC: Moving Innovation Forward.

To watch more videos like this one, visit CTTC's YouTube Channel.

CTTC on Twitter