Available Technologies

ADDITIONAL FILTERS

292 available technologies

TagDock:an efficient rigid body molecular docking algorithm for three dimensional models of oligomeric biomolecular complexes with limited experimental restraint data

TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through distance difference analysis TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models

GluN2B Floxed Mice (also called NR2B, glutamate receptor 2B)

Allows for targeted deletion of the GluN2B subunit of NMDA receptors in specific cells or at specific times during development, juvenile, or adult stages. C57BL6/J background

Generic Magnetic Resonance Imaging Gradient Delay Correction Method for Radial and Spiral Acquisitions

Vanderbilt researchers have developed a way to correct for ubiquitous gradient delay errors in radial and spiral MRI data using only the data necessary to acquire the images. No extra data is required and no special scan must be done to perform the corrections using this unique method.

Ordered Mesoporous Silica- Metal Organic Composite Adsorbent

Vanderbilt researchers have developed a novel biphasic adsorbent material that is useful for the removal of contaminant molecules, including toxic light gases, from gases and liquids. This revolutionary material provides enhanced adsorption capacity and stability for a broad range of chemicals compared to conventional commercial and research grade adsorbent materials.

Ferroelectric Nanofluids for Piezoelectric and Electro-Optic Uses

Researchers at Vanderbilt University have developed a new method of producing microscale and nanoscale ferroelectric fluids. These particles are useful in a variety of piezoelectric, pyroelectric, and electrooptic devices such as thin-film capacitors, electronic transducers, actuators, high-k dielectrics, pyroelectric sensors, and optical memories.

Collapsible Lightweight Portable Leg Holder for Ultrasound Guided Lateral Popliteal Block Procedures

A Vanderbilt team led by anesthesiologist Dr. Rajnish Gupta has developed a collapsible, lightweight and portable patient leg positioner for secure and stable leg positioning during ultrasound guided nerve block anesthetic procedures.

Metabolic Labeling Reagents for Chondroitin Sulfate

Dr. Patrick Page-McCaw has developed synthetic analogs of N-acetylgalactosamine, finally enabling researchers to track the biosynthesis of chondroitin sulfate along with other glycans. These stunning images demonstrate incorporation of these metabolic labeling reagents to track neurodevelopmental processes in a zebrafish model system. Notably, the metabolic label can be detected post vivo using a standard "click" chemistry reaction. Further, Dr. Page-McCaw has optimized a background reduction strategy to complement this technology by improving the signal-to-noise ratio.

Diamond Field-Emission Cathodes and Channeling Radiation System for High-Brightness X-ray Sources for Phase Contrast Soft Tissue Imaging

The technology disclosed is an electron gun system that comprises an array of gated field-emitting cathode tips having a diamond pyramid capable of producing an electron beam with exquisitely small emittance (N ~ 2 nm); an accelerator capable of accelerating the emitted electrons to relativistic energies (from ~ 3 Mev to~ 50MeV); and a focusing assembly capable of focusing the accelerated electrons into a focal spot on a diamond crystal to produce hard X-rays. Inventors have observed more than 10 mA average current from a single field-emitting tip with improved performance expected with changes to other system components. By using a single tip it may be possible to improve the transverse brightness of the electron beam by as much as six orders of magnitude, with a corresponding improvement of the spectral brilliance of the X-ray beam.

Sliding Mode Control System for Steerable Needles

A team of Vanderbilt engineers has developed an advanced control system that is a first-ever 3D control system for delivering a bevel-based steerable needle to its intended target. The controller is also useful for (a) following a desired curved path through tissue; (b) accurately placing the needle tip at the physician's desired target, and (c) reaching obstructed targets using non-straight paths. Experiments in phantom tissue and ex-vivo liver have validated the concept. Experiments with targets that move due to tissue deformation have also been successful.

Diagnostic to Predict Paternal Premature Birth Risk Factors: Therapy Can Reduce Risk

Premature birth is the leading cause of neonatal death worldwide, affecting 13% of US infants (500,000 babies/year). Of great concern, premature birth cannot currently be reliably predicted or prevented. Existing risk factors and interventions for premature birth focus solely on maternal factors, thereby overlooking paternal factors that influence an infant's development. Vanderbilt researchers have now identified a missing piece of the puzzle and are developing a diagnostic test to predict premature birth risks conferred to infants by their fathers. Of key importance, the test offers meaningful clinical guidance, as risk factors measured by the diagnostic can be modified before conception via supplementation.

Composite Material for Tunable Memristance Behavior

This technology uses combinations of materials with different electronic properties of micro-or nanometerscale grain size to create a memristive device (twoterminal, variable resistance circuit element). Amidst growing interest in memristors, this technology is one of the first to use composite materials, which make the memristive qualities of the material tunable.

New Molecules Clear Chronic Infections by Disrupting Bacterial Energy Production Pathways

New compounds developed at Vanderbilt demonstrate a unique mechanism of broad spectrum activity to stymy antibacterial resistance. The compounds are particularly useful in chronic infections where long term antibiotic therapy fails, because it specifically kills small colony variants -- the bacteria that have developed resistance mechanisms. These compounds show promise in treating Methicillin-resistant S. aureus (MRSA), Bacillus anthracis (anthrax), and in overcoming difficult-to-treat infections in bone in cystic fibrosis patients. These compounds could be combined with new (and old) antimicrobial drugs to outwit resistant bacterial infections.

Featured Video

Vanderbilt Patent Activity

View Vanderbilt University Patents

CTTC on Twitter