Available Technologies


300 available technologies

Treating Glioblastoma by a Combination Therapy of Gamma-secretase inhibitors and Farnesyltransferase Inhibitors

Scientists at Vanderbilt have developed a novel therapy for gliobastoma multiform that results in minimal recurrence of the tumor. The therapy combines two inhibitors that effectively compromise tumor cell growth and survival. The therapy can be followed by radiation, a common treatment for cancer cells.

Diagnostics Management Team

The sheer volume of medical information available to physicians today is overwhelming. Diagnostic Management Team provides a concise, accurate method for ordering the correct diagnostic tests every time, and it returns the results in a uniform report format, easily read by the physician. This has already been launched within Vanderbilt University, with a high adoption rate amongst physicians and has already shown significant savings.

Stable Preparation of Fetal Hemoglobin to Improve Tissue Oxygenation

Dr. Hawiger and colleagues developed a novel form of cell-penetrating fetal hemoglobin. This technology is useful for the treatment of hemoglobinopathies or to increase oxygen delivery in any condition. The preparation is stable and sterile. Upon reconstitution, the treatment can be delivered I.V. or through transfusion.

Luciferase-expressing Embryonic Stem Cell Line for Monitoring wnt or BMP Promotor Activity

The mouse embryonic stem cell line, CGR8, has been genetically modified to express luciferase under the control of either the wnt or the BMP promoter system. This technology allows rapid visualization or genetic modification of wnt and BMP pathways in development.

Nanostructured Molybdenum (IV) disulfide (MoS2) Electrodes

The most common counter electrode materials used for in Quantum dot sensitized solar cells (QDSSCs) quickly become poisoned by sulfide, resulting in significant current drops, which lowers solar cell efficiencies and makes them unsuitable for long-term use in a device. Also, some of these materials are rare and expensive, so replacing them with an inexpensive, earth-abundant material is a desirable goal. This invention uses a Mo foil to produce the desired uniform growth of Molybdenum (IV) disulfide (MoS2) petals from the Mo foil, making the foil both the source of Mo as well as the substrate. This petaled MoS2 electrode shows a vastly improved polysulfide reduction compared to Glassy Carbon, ordinary Mo foil, Pt and Au. The petaled MoS2 electrode lost only 0.63% of its initial current density at -1 V whereas Pt lost 13.58% after only five scans, indicating the petaled MoS2 films are highly stable as cathodes. The technology was tested in a solar device setting, using standard photoanodes to test the efficiency of a device employing petaled MoS2 as its cathode. Devices in which a petaled MoS2 cathode was used achieved nearly fivefold improvement in efficiency over those employing a Pt cathode.

Hyper-SHIELDED - Preserving Parahydrogen Spin Order by Efficient Transfer of Nuclear Singlet

Hyperpolarization of nuclear spin ensembles has increased NMR sensitivity to a level that is now enabling detection of metabolism in biological tissue on a time-scale of seconds. The present invention is a pulse sequence that efficiently transforms parahydrogen spin order into heteronuclear magnetization. This was achieved via a single streamlined sequence without recursive application, by finding sequential analytic solutions to the density matrix evolution for each of four independent intervals that collectively flank two proton inversions and one heteronuclear excitation. The name hyper-SHIELDED (Singlet to Heteronuclei by Interative Evolution Locks Dramatic Enhancement for Delivery) reflects the sequence's protective effect on PHIP hyperpolarization.

Featured Video

Vanderbilt Patent Activity

View Vanderbilt University Patents

CTTC on Twitter