Available Technologies

ADDITIONAL FILTERS

300 available technologies

Screening Test for ACE or Vasopeptidase Inhibitor Associated Angioedema

Angioedema is a life-threatening and unpredictable side effect of angiotensin converting enzyme (ACE) inhibitors and ACE/Neutral endopeptidase (NEP) inhibitors, drugs aimed at reducing cardiovascular mortality associated with a variety of disease states. This technology permits the identification of individuals at risk for developing this angioedemic condition as a result of taking ACE inhibitors or NEP inhibitors. The patents and patent applications claim biological markers, diagnostic methods and kits.

Novel Esters and Amides Derived from Indolealkanol and Indolealkylamines as Selective Cyclooxygenase-2 (Cox-2) Inhibitors

A compound of the formula ##STR1## where: n, and X are as defined in the specification, and the compound possesses selectivity for inhibition of cyclooxygenase-2.

Carboxylic Acid Amides as Selective COX-2 Inhibitors

A method of treating animals having cancer by administration of secondary amide derivatives of various COOH-containing drugs, such as COOH-containing NSAIDs, for instance, indomethacin.

Selective Reversible Cyclooxygenase-2 Inhibitors

A method of altering specificity of cyclooxygenase-inhibiting compounds that have a COOH moiety by changing the various COOH containing compounds, such as indomethacin, into ester derivatives or into secondary amide derivatives.

ARF and ARF Mimics to Inhibit Myc Protein Function

The c-Myc oncogene is bound by p19Arf, which inhibits c-Myc's ability to transform cells while augmenting apoptosis. This provides the basis for screening assays that examine the ability of various candidate substances to promote p19Arf interactions, or to substitute therefor.

Live Attenuated Coronavirus Vaccines

The present invention is directed live, attenuated coronavirus vaccines. The vaccine comprises a viral genome encoding a p59 protein having at mutation at a specific tyrosine residue, and may include other attenuating mutations. Such viruses show reduced growth and pathogenicity in vivo.

Transductive Access Catheter

The tissue of the human body is separated by planes separated by minimal fluid, and it is often desirable to enter into the space between these planes to perform procedures including delivery or removal of fluid/therapeutics. Accurately and harmlessly placing catheters within these planes is very difficult because of the very close proximity of the tissues -- often within 1mm. The Transductive Access Catheter System solves these problems by allowing the operator to insert a shallow beveled needle into the space of interest using a hollow inner catheter that is filled with saline to probe much like a micro water hammer to detect difference in resistance to flow at the tip of the catheter. The primary competing technology uses suction to pull on the outer tissue which increases the target space volume at the catheter; however this has limitations of tissue rigidity and thickness (PerDUCER, Comedicus). Due to the versatility across disciplines, a wide variety of applications for this catheter exist, which include: Pericardial Space Infusion or Drainage, Pleural Space Infusion or Drainage, Subdural and Epidural Infusion, and Intraocular Fluid Space Infusion or Drainage.

PANORAMIC: Precession and Nutation for Observing Rotation at Multiple Intervals about the Carrier

Methods of hyperpolarization based on parahydrogen have been expanding recently from the early applications in hydrogenation chemistry to biomedical imaging where they are expected to yield similar information as the competing technology, dynamic nuclear polarization, (DNP). These hyperpolarization experiments have already enabled the measurement of metabolism in vivo at temporal resolutions of seconds. When infused into organisms harboring tumor cells, molecules such as pyruvate and lactate have been shown to be sufficiently long-lived to infiltrate cellular metabolic cycles and be converted at different rates in cancer versus normal tissue. DNP has been used most frequently in these early studies, owing to commercial availability and the flexibility to polarize small molecules such as pyruvate and lactate. Techniques based on chemical addition or exchange of parahydrogen have also shown promise for generating metabolic contrast in vivo at similar levels of signal enhancement and at lower costs.

Parahydrogen-Induced Polarizer (PHIP)

The present invention provides a PANACEA (Pneumatics Allow Nonmagnetic Actuation for Creation of Enhanced Alignment) polarizer system. This is an integrated assembly of pneumatically actuated, nonmagnetic hydraulic circuits that enable PASADENA chemicals to be efficiently stored, mixed, and reacted in close proximity or within NMR magnetic fields.

Chemical Synthesis of Isotopically Enriched Unsaturated Precursors for Parahydrogen Induced Polarization of 15N Hyperpolarized Choline

The present invention provides unsaturated choline analogs which, when hyperpolarized, may be useful as MRI contrast agents, and methods of making these choline analogs. These analogs can also be further modified to form hyperpolarized choline for use as an MRI contrast agent. The invention takes advantage of PHIP and can be produced in volume in much shorter times than by using DNP.

Relaxation Time Discriminated 1H NMR for Bone Mechanical/Fracture Property Diagnostics

The present invention describes clinically-practical MRI methods for distinguishing bound and pore water signals from cortical bone based on T2-selective adiabatic pulses as well as T1 characteristics of cortical bone bound and pore water, and offers an improved method of assessing bone structure and fracture risk over x-ray based diagnostic techniques.

Featured Video

Vanderbilt Patent Activity

View Vanderbilt University Patents

CTTC on Twitter