Available Technologies

ADDITIONAL FILTERS

285 available technologies

Radiation Guided Drug Delivery to Tumors

The technology described here permits the delivery of therapeutic or diagnostic (tumor imaging) molecules to a variety of tumor types in a targeted fashion. Current methods for targeting therapeutic agents to tumors have limited utility because they
(i) produce toxic effects through reactions with normal tissues;
(ii) lack the ability to bind to multiple tumor types and/or
(iii) lack tumor specificity.
This technology is based upon the fact that certain proteins are upregulated in blood vessels in response to irradiation. These upregulated proteins can act as targets for binding molecules such as antibodies, peptides, or other chemicals. Attaching an anti-tumor therapeutic unit, such as a radioisotope, to one of these binding molecules (e.g. an antibody) provides a way to treat or detect a variety of tumor types and stages while avoiding damage to normal tissue. Licensing Opportunity: A suite of patents and patent applications available for licensing includes compositions of radiation-inducible tumor proteins, and molecules that bind these proteins such as peptides and antibodies; along with methods of using these ligands for treatment and for identification of radiation inducible ligands in tumors. State of development/future plans: Screening a phage display library (murine) has resulted in production of 13 recombinant antibodies that bind to an identified radiation-inducible antigen. Only 2 (designated Lead and Control ScFv) of the 13 recombinant antibodies bound radiation-induced antigen in mice and are depicted in the accompanying figure. Of these two, the LEAD ScFv specifically bound tumor (see figure). Research is moving towards humanizing the lead antibody and identifying the specific epitope bound by the antibody.

Microcatheter with Hemodynamic Guide Structure

A catheter device for therapeutic and diagnostic use within a human vascular system in difficult to access locations such as bifurcating cerebral arteries. The distal end of the catheter body comprises a flexible material so that the catheter tip can deflect laterally towards the vessel wall in response to the hemodynamic lift. An intermediate section of the catheter body between the hub and the tip provides a semi-rigid control connection whereby pushing, pulling, and rotation of the hub produces a corresponding movement of the catheter tip.

Phase-Contrast-Enhanced Computed Tomography Scanner

A phase-contrast X-Ray computed tomography scanner, a monochromatic diffraction computed tomography scanner, a rotatable monochromatic diffraction computed tomography scanner, and a combination phase-contrast and monochromatic computed tomographic scanner are provided. In addition, a method of identifying an unknown sample is provided.

System for Standardizing Ultrasonography Training Using Tomographic Volumes

Currently practical (as opposed to didactic) training is performed by trainees practicing on live patients and then learning disease processes from mentors. The training is serendipitous by necessity. This technology would potentially shorten, standardize, and broaden the training for technicians as well as radiologists and surgeons.

System for Determining the Orientation of a Bone-Implanted Anchor

A method for simplifying the process of designing a platform for minimally invasive surgery. The platform is designed to attach to a set of bone-implanted anchors attached to the patient. This method makes the fitting of the platform to the anchors simpler and easier.

Method for the Automatic Segmentation of the Facial Nerve and the Chorda Tympani in CT Images

This is a high resolution imaging device that can detect the fundamental functional units of cortical organization. Currently, with existing technology, we are able to monitor the activity of these units in the awake, head-fixed animal using large standard sized cameras mounted on heavy camera arms. However, we need a capability to conduct such monitoring in the awake and freely moving animal so that we can relate specific patterns of cortical activity to natural behaviors.

Intervertebral Disc Replacement Prosthesis

An intervertebral disc prosthesis that comprises a deformable flexure with an axial cavity, the axial cavity extending along the axis of the flexure, and a slit defined in the perimeter surface of the flexure to provide flexibility to the disc member, the slit having a slit thickness.

System for Determining the Orientation of a Bone Implanted Post

A method for determining an orientation of a base to which a fiducial marker is detachably mounted. The method includes the steps of determining the axis of symmetry for the fiducial marker and choosing the determined axis of symmetry of the fiducial marker as the axis of symmetry of the base.

Novel Application for Imaging Agents

Compounds and methods related to NIR molecular imaging, in-vitro and in-vivo functional imaging, therapy/efficacy monitoring, and cancer and metastatic activity imaging. Compounds and methods demonstrated pertain to the field of peripheral benzodiazepine receptor imaging, metabolic imaging, cellular respiration imaging, cellular proliferation imaging as targeted agents that incorporate signaling agents.

Micro and NanoParticulate Polymeric Delivery System

The present invention provides a method of making particles useful in drug delivery, comprising the steps of: contacting polyanionic polymers with cations in a stirred reactor so that polyanions and the cations react to form particles.

Gene Expression Model Selector (GEMS)

Gene Expression Model Selector (GEMS) is a system that constructs, in a supervised fashion, diagnostic and outcome prediction models from array gene expression data. Examples of such models are: (a) models that detect cancer, (b) models that determine the correct subtype of cancer or (c) models that predict survival after treatment. Models that support such complex decision making are widely recognized as having the potential to revolutionize medicine in the years to come. In addition to the decision support models, GEMS can be used to select a small number of genes that are as good or better than the full gene set for diagnosis and/or outcome prediction. These biomarkers (genes) are also useful for discovery purposes (e.g., they suggest plausible causes and treatments of various types of cancer). Finally, GEMS provides estimates of the models' performance (e.g., accuracy) in future applications (i.e., when applied on patients not used to build the models but who come from the same patient population as the ones used to build the models), and allows users to run the models for individual patients.

Diagnosing and Grading Gliomas Using a Proteomics Approach

This technology provides for a proteomic approach to grading gliomas, and for predicting patient survival. In addition to employing global protein expression patterns, such as by mass spectrometry, particular target proteins whose expression is altered in various gliomas can be used to predict the stage/classification of a glioma, as well as to indicate whether a given patient will be a short- or long-term survivor.

Featured Video

Vanderbilt Patent Activity

View Vanderbilt University Patents

CTTC on Twitter