Available Technologies


294 available technologies

Continuous Flow Electrophoresis Apparatus

An electrophoresis chamber having the separation capability of a thicker chamber by the addition of a number of ports along the length of the chamber that can act as inlets or outlets. The device introduces cross flow by either a plurality of input and output ports along opposite walls of the chamber or by a tapered chamber having a plurality of output ports. Since the mobility of the particles is lateral to the direction of flow and the cross flow velocity is opposite in direction and greater than the maximum electrophoretic velocity of the particles being separated such particles are carried to the wall of a narrow linear chamber and will pass through ports provided in the wall spaced at strategic distances along the wall separation is achieved. In addition, because the sample and the outlet electrode surface are of like sign there is no deposition of the sample on the electrode surface.

System & Method for Direct Fabrication of Micro/Macro Scale Objects in a Vacuum Using Electromagnetic Steering

This new materials processing technology allows metal and ceramic parts to be manufactured in three dimensions by additive deposition of material, either in atmosphere or in a vacuum. The scale is on the order of the powder size and can be as small as one micron. The deposition rate can be orders of magnitude greater than vapor deposition, which is the current vacuum fabrication technology for devices.

Software for MIAIR (Mutual Information Affine Image Registration)

This program permits the automatic registration (spatial realignment) of 2D and 3D mono- and multi-modal medical images. In its current form it uses Mutual Information as the similarity measure. It supports multi-resolution schemes and transformations up to 12 degrees of freedom.

Software for Adaptive Basis Non-Rigid Registration Algorithm

This program permits the automatic non-rigid registration (spatial realignment) of 2D and 3D mono-and multi modal images.

Software, NR3D for optical-flow based non-rigid registration algorithm

This program permits the automatic non-rigid registration (spatial realignment) of 2D and 3D mono-modal medical images. The algorithm is based on optical flow principles.

Laser Range Scanning for Cortical Surface Registration & Deformation Tracking

This technology is fundamentally a new way to align a patient in an image-guided surgery system (registration) without the use of fiducial markers on the cranium exterior. The system utilizes laser range scanning technology, the natural features on the cortical surface, and the corresponding natural features derived from the patient's preoperative magnetic resonance tomograms. In addition, the technology is amenable to measuring deformation (brain shift) for use within a mathematical model-based strategy for shift compensation.

SIMON (Signal Interpretation and Monitoring)

Simon (Signal Interpretation and Monitoring) is an ongoing research and development effort at Vanderbilt University. Simon's overall goal is to provide effective computerized medical decision support in critical care through novel collection, analysis, and presentation of physiologic data from bedside medical devices.

Software for interactive registration and visualization of tomographic medical images

1) The visualization (2D and 3D) of images. Its main area of application is thevisualization of tomographic medical images data sets2) the interaction with these data sets. The software permits the manual alignment of datasets, the delineation of regions of interest (both in 2D and in 3D), the import and export of these regions of interest, the display of these regions both as contours or as surfaces, as well as the processing of the images (filtering, image enhancement, etc.)3) The registration of medical images. This software has been designed to permit therealignment of multiple data sets. This realignment can be performed manually and interactively or it can be performed automatically. In the latter case, transformations that permit the realignment of the images can be imported in the software that uses these transformations to realign the images. The software is designed to accept a wide variety of transformations ranging from rigid transformations to non-rigid transformations. These transformations can be modified interactively and re-exported.The software runs on any computer on which the IDL virtual machine runs (currently Windows, Unix, and Mac OS). The software is designed to be user friendly but it does not currently include a user's manual.

Adjustable Universal Platform for Surgical Navigation, Approach, and Implantation

A surgical platform usable for performing a surgical procedure. In one embodiment, the surgical platform comprises a base portion configured to receive at least one probe; a plurality of adjustable legs configured to support the base portion, each adjustable legs having a first end portion and an opposite, second end potion defining a length therebetween; and at least one movable portion configured to adjust the length of at least one adjustable leg.

Trimodal Handheld Probe Based on Raman Spectroscopy and Confocal Imaging for Cancer Detection

This technology relates to a device and method for non-invasive evaluation of a target of interest of a living subject, and in particular to devices and methods that integrate confocal imaging with confocal Raman spectroscopy, for non-invasive evaluation of the biochemical compositions and morphological details of normal and cancerous skin lesions of a living subject.

Helical Peristaltic Nanopump for BioMEMS Devices

A metering rotary nanopump for driving BioMEMS and microfluidic systems.

High Energy - Density Hydraulic Accumulator

Vanderbilt inventors propose an inexpensive and easy to manufacture hydraulic accumulator. The proposed hydraulic accumulator technology is intended for energy storage. It is superior to current alternatives in that it provides a simple, efficient and relatively cheap method for storing a large amount of energy in a relatively small volume and mass. One example of its application would be in regenerative braking of passenger vehicles (hydraulic hybrid).

Optical Stimulation of the Auditory Nerve

A cochlear implant placed in a cochlea of a living subject for stimulating the auditory system of the living subject, where the auditory system comprises auditory neurons. In one embodiment, the cochlear implant includes a plurality of light sources, {L.sub.i}, placeable distal to the cochlea, each light source, L.sub.1, being operable independently and adapted for generating an optical energy, E.sub.i, wherein i=1, . . . , N, and N is the number of the light sources, and delivering means placeable in the cochlea and optically coupled to the plurality of light sources, {L.sub.i}, such that in operation, the optical energies {E.sub.i} generated by the plurality of light sources {L.sub.i} are delivered to target sites, {G.sub.i}, of auditory neurons, respectively, wherein the target sites G.sub.1 and G.sub.N of auditory neurons are substantially proximate to the apical end and the basal end of the cochlea, respectively.

Featured Video

Vanderbilt Patent Activity

View Vanderbilt University Patents

CTTC on Twitter