Available Technologies

ADDITIONAL FILTERS

Research Tools

114 available technologies

TagDock:an efficient rigid body molecular docking algorithm for three dimensional models of oligomeric biomolecular complexes with limited experimental restraint data

TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through distance difference analysis TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models

GluN2B Floxed Mice (also called NR2B, glutamate receptor 2B)

Allows for targeted deletion of the GluN2B subunit of NMDA receptors in specific cells or at specific times during development, juvenile, or adult stages. C57BL6/J background

Metabolic Labeling Reagents for Chondroitin Sulfate

Dr. Patrick Page-McCaw has developed synthetic analogs of N-acetylgalactosamine, finally enabling researchers to track the biosynthesis of chondroitin sulfate along with other glycans. These stunning images demonstrate incorporation of these metabolic labeling reagents to track neurodevelopmental processes in a zebrafish model system. Notably, the metabolic label can be detected post vivo using a standard "click" chemistry reaction. Further, Dr. Page-McCaw has optimized a background reduction strategy to complement this technology by improving the signal-to-noise ratio.

Tools for targeting and assessing force generation in kinesins

Kinesins are motor proteins in eukaryotic cells powered by ATP hydrolysis. These proteins are involved in various cellular functions including cell division. In particular, Kinesin-5 (also known as KIF11 and Eg5) is essential to forming the microtubule spindle structure in mitosis; therefore, this protein is a potential target for chemotherapeutics. Chimeric kinesin proteins, comprising one or more regions from at least two kinesin proteins, are valuable tools to study the molecular mechanism of kinesin function as well as to identify agents that affect kinesin motor function.

Featured Video

Vanderbilt Patent Activity

View Vanderbilt University Patents

CTTC on Twitter