Available Technologies


Thin Films & Nanomaterials

18 available technologies

Nanostructured Molybdenum (IV) disulfide (MoS2) Electrodes

The most common counter electrode materials used for in Quantum dot sensitized solar cells (QDSSCs) quickly become poisoned by sulfide, resulting in significant current drops, which lowers solar cell efficiencies and makes them unsuitable for long-term use in a device. Also, some of these materials are rare and expensive, so replacing them with an inexpensive, earth-abundant material is a desirable goal. This invention uses a Mo foil to produce the desired uniform growth of Molybdenum (IV) disulfide (MoS2) petals from the Mo foil, making the foil both the source of Mo as well as the substrate. This petaled MoS2 electrode shows a vastly improved polysulfide reduction compared to Glassy Carbon, ordinary Mo foil, Pt and Au. The petaled MoS2 electrode lost only 0.63% of its initial current density at -1 V whereas Pt lost 13.58% after only five scans, indicating the petaled MoS2 films are highly stable as cathodes. The technology was tested in a solar device setting, using standard photoanodes to test the efficiency of a device employing petaled MoS2 as its cathode. Devices in which a petaled MoS2 cathode was used achieved nearly fivefold improvement in efficiency over those employing a Pt cathode.

Ferroelectric Nanofluids for Piezoelectric and Electro-Optic Uses

Researchers at Vanderbilt University have developed a new method of producing microscale and nanoscale ferroelectric fluids. These particles are useful in a variety of piezoelectric, pyroelectric, and electrooptic devices such as thin-film capacitors, electronic transducers, actuators, high-k dielectrics, pyroelectric sensors, and optical memories.

Stable Nanopores in Graphene

This technology consists of a method to fabricate a truly 2 dimensional porous surface using graphene with stabilized pore diameters less than a few nanometers. The nanopores are inert and stable for extended periods of time (several months) and under extreme conditions. The resulting membrane can be used in water purification, chemical separation, sensing, DNA sequencing, and other applications.

Ordered Mesoporous Silica- Metal Organic Composite Adsorbent

Vanderbilt researchers have developed a novel biphasic adsorbent material that is useful for the removal of contaminant molecules, including toxic light gases, from gases and liquids. This revolutionary material provides enhanced adsorption capacity and stability for a broad range of chemicals compared to conventional commercial and research grade adsorbent materials.

Composite Material for Tunable Memristance Behavior

This technology uses combinations of materials with different electronic properties of micro-or nanometerscale grain size to create a memristive device (twoterminal, variable resistance circuit element). Amidst growing interest in memristors, this technology is one of the first to use composite materials, which make the memristive qualities of the material tunable.

Featured Video

Vanderbilt Patent Activity

View Vanderbilt University Patents

CTTC on Twitter