Available Technologies

ADDITIONAL FILTERS

Medical Imaging

29 available technologies

Method for Determining Bone Surface Points Using A-Mode Ultrasound

An A-mode ultrasound transducer is tracked in three-dimensions by an optical position tracking system as the transducer is scanned over the skin to generate measurements of bone surface distance from the transducer. A processor correlates the ultrasound data with position and orientation data to generate a three-dimensional physical space model of the bone surface which is registered with an image space model of the bone surface generated from a tomographic image to produce an alignment of the two models. The ultrasound transducer is replaced by an instrument which is also optically tracked. The alignment is used to translate instrument position in physical space to a position in image space for generation on a monitor of a composite display of the instrument and the tomographic image. This composite display can be used to guide positioning and orienting the instrument in physical space with respect to sites of interest observed in the tomographic image on the display.

Apparatus and Method for Three-Dimensional Imaging Using A Stationary Monochromatic X-Ray Beam

A parallel X-ray beam generated from an X-ray generator is radiated onto a CCD of a CCD camera via a metal mesh disposed in front of the CCD. In order to detect the X-ray, a multi-pitch metal mesh (11) is disposed as the metal mesh. The incident position of the X-ray is determined on the basis of a ratio between a primary electron cloud produced by the X-ray spread over a plurality of pixels and a portion of the cloud existing in each of the plurality of pixels.

System for Producing Pulsed Monochromatic X-Rays

A system for generating tunable pulsed monochromatic X-rays includes a tabletop laser emitting a light beam that is counter-propagated against an electron beam produced by a linear accelerator. X-ray photon pulses are generated by inverse Compton scattering that occurs as a consequence of the "collision" that occurs between the electron beam and IR photons generated by the laser. The system uses a novel pulse structure comprising, for example, a single micropulse. In this way, pulses of very short X-rays are generated that are controllable on an individual basis with respect to their frequency, energy level, "direction," and duration.

Radiation Guided Drug Delivery to Tumors

The technology described here permits the delivery of therapeutic or diagnostic (tumor imaging) molecules to a variety of tumor types in a targeted fashion. Current methods for targeting therapeutic agents to tumors have limited utility because they
(i) produce toxic effects through reactions with normal tissues;
(ii) lack the ability to bind to multiple tumor types and/or
(iii) lack tumor specificity.
This technology is based upon the fact that certain proteins are upregulated in blood vessels in response to irradiation. These upregulated proteins can act as targets for binding molecules such as antibodies, peptides, or other chemicals. Attaching an anti-tumor therapeutic unit, such as a radioisotope, to one of these binding molecules (e.g. an antibody) provides a way to treat or detect a variety of tumor types and stages while avoiding damage to normal tissue. Licensing Opportunity: A suite of patents and patent applications available for licensing includes compositions of radiation-inducible tumor proteins, and molecules that bind these proteins such as peptides and antibodies; along with methods of using these ligands for treatment and for identification of radiation inducible ligands in tumors. State of development/future plans: Screening a phage display library (murine) has resulted in production of 13 recombinant antibodies that bind to an identified radiation-inducible antigen. Only 2 (designated Lead and Control ScFv) of the 13 recombinant antibodies bound radiation-induced antigen in mice and are depicted in the accompanying figure. Of these two, the LEAD ScFv specifically bound tumor (see figure). Research is moving towards humanizing the lead antibody and identifying the specific epitope bound by the antibody.

Phase-Contrast-Enhanced Computed Tomography Scanner

A phase-contrast X-Ray computed tomography scanner, a monochromatic diffraction computed tomography scanner, a rotatable monochromatic diffraction computed tomography scanner, and a combination phase-contrast and monochromatic computed tomographic scanner are provided. In addition, a method of identifying an unknown sample is provided.

Surgical Instrument Disablement Via Image-Guided Position Feedback

Vanderbilt inventors have developed a computer-assisted feedback triggered surgical disablement device. This system generates a warning and then disables a surgical device when the surgeon approaches tissue outside of the selected operating tissue. This system allows a safety mechanism to be implemented ensuring surgical accuracy.

Method for the Automatic Segmentation of the Facial Nerve and the Chorda Tympani in CT Images

This is a high resolution imaging device that can detect the fundamental functional units of cortical organization. Currently, with existing technology, we are able to monitor the activity of these units in the awake, head-fixed animal using large standard sized cameras mounted on heavy camera arms. However, we need a capability to conduct such monitoring in the awake and freely moving animal so that we can relate specific patterns of cortical activity to natural behaviors.

Novel Application for Imaging Agents

Compounds and methods related to NIR molecular imaging, in-vitro and in-vivo functional imaging, therapy/efficacy monitoring, and cancer and metastatic activity imaging. Compounds and methods demonstrated pertain to the field of peripheral benzodiazepine receptor imaging, metabolic imaging, cellular respiration imaging, cellular proliferation imaging as targeted agents that incorporate signaling agents.

Simultaneous RNA and Gene Expression Profiling Using Mass Spectrometry

This technology allows the simultaneous detection of RNA transcript abundance (as an assay of gene expression) and protein abundance (as an assay of protein expression) from biological samples without RNA isolation, labeling or amplification. Existing technologies allow for very efficient determinations of protein abundance from a wide variety of biological samples. These methods are in widespread use and are based on mass spectrometry technologies. There are no available technologies that allow efficient and quantitative assessment of multiple RNA transcripts without a previous isolation followed by labeling and/or amplification. The most efficient technologies currently available make use of DNA microarrays to profile RNA abundance as a measure of gene expression. While very robust and useful, these technologies are very labor intensive and suffer from a number of technological drawbacks. This technology takes advantage of a number of existing methods and techniques and brings them together in a novel manner that greatly expands the state of the art for gene expression.

PANORAMIC: Precession and Nutation for Observing Rotation at Multiple Intervals about the Carrier

Methods of hyperpolarization based on parahydrogen have been expanding recently from the early applications in hydrogenation chemistry to biomedical imaging where they are expected to yield similar information as the competing technology, dynamic nuclear polarization, (DNP). These hyperpolarization experiments have already enabled the measurement of metabolism in vivo at temporal resolutions of seconds. When infused into organisms harboring tumor cells, molecules such as pyruvate and lactate have been shown to be sufficiently long-lived to infiltrate cellular metabolic cycles and be converted at different rates in cancer versus normal tissue. DNP has been used most frequently in these early studies, owing to commercial availability and the flexibility to polarize small molecules such as pyruvate and lactate. Techniques based on chemical addition or exchange of parahydrogen have also shown promise for generating metabolic contrast in vivo at similar levels of signal enhancement and at lower costs.

Parahydrogen-Induced Polarizer (PHIP)

The present invention provides a PANACEA (Pneumatics Allow Nonmagnetic Actuation for Creation of Enhanced Alignment) polarizer system. This is an integrated assembly of pneumatically actuated, nonmagnetic hydraulic circuits that enable PASADENA chemicals to be efficiently stored, mixed, and reacted in close proximity or within NMR magnetic fields.

Chemical Synthesis of Isotopically Enriched Unsaturated Precursors for Parahydrogen Induced Polarization of 15N Hyperpolarized Choline

The present invention provides unsaturated choline analogs which, when hyperpolarized, may be useful as MRI contrast agents, and methods of making these choline analogs. These analogs can also be further modified to form hyperpolarized choline for use as an MRI contrast agent. The invention takes advantage of PHIP and can be produced in volume in much shorter times than by using DNP.

Relaxation Time Discriminated 1H NMR for Bone Mechanical/Fracture Property Diagnostics

The present invention describes clinically-practical MRI methods for distinguishing bound and pore water signals from cortical bone based on T2-selective adiabatic pulses as well as T1 characteristics of cortical bone bound and pore water, and offers an improved method of assessing bone structure and fracture risk over x-ray based diagnostic techniques.

Featured Video

CTTC: Moving Innovation Forward.

To watch more videos like this one, visit CTTC's YouTube Channel.

CTTC on Twitter