Available Technologies

ADDITIONAL FILTERS

Medical Imaging

28 available technologies

Near-Infrared Dye with Large Stokes Shift for Simultaneous Multichannel in vivo Molecular Imaging

Fluorescent labels having near-infrared (NIR) emission wavelengths have the ability to penetrate tissue deeper than other emission wavelengths, providing enormous potential for non-invasive imaging applications. However, advancement of optical imaging (particularly NIR imaging) is hindered by the limitation of narrow Stokes shift of most infrared dyes currently available in the market. Vanderbilt researchers have developed a novel NIR dye (4-Sulfonir) for multichannel imaging that enables in vivo imaging of multiple targets due to its large Stokes shift. 4-Sulfonir with its unique large Stokes shift (~150 nm) and wide excitation spectrum could be used in parallel with other NIR dyes for imaging two molecular events simultaneously in one target.

Brain Shift Compensation Using Computer Models

This technology eliminates the need to place cortical fiducial markers during image guided neurosurgery. As an additional and important feature, the technology is able to compensate for brain shift due to deformation of the brain during surgery.

Real Time Surgical Imaging

Vanderbilt researchers have developed a device that allows for a more accurate and precise detection of brain tumor borders in real time. This allows neurosurgeons to remove all tumor tissue without removing critical normal tissue in surgical brain resections.

Arbitrary Shape Selective Excitation Summed Spectroscopy (ASSESS)

Vanderbilt researchers have developed a novel single-voxel localization technique for Magnetic Resonance Spectroscopy (MRS), termed ASSESS (Arbitrary Shape Selective Excitation Summed Spectroscopy). ASSESS can measure spectra from regions of arbitrary shape allowing the user to customize the region of interest.

System and Methods of Using Image-guidance for Placement of Cochlear Stimulator Devices, Drug Carrier Devices, or the Like

Vanderbilt inventors have developed and tested a device (C-in) and method that would shift the current invasive, risky surgical procedure of cochlear implantation to a less invasive outpatient procedure.

PosiSeat™: Assured Seating of Threaded Surgical Components

Vanderbilt presents an intraoperative device for taking the guesswork out of whether or not a threaded component is securely affixed to bone. This device is an anchor driver that automatically releases upon proper seating of the anchor on the bone of interest.

MultiUse Multimodal Imaging Chelates

PK11195 is a high-affinity ligand of the peripheral benzodiazepine receptor (PBR). By linking lanthanide chelates to the PK11195 targeting moiety, Vanderbilt researchers have generated a range of PBR-targeted imaging probes capable of visualizing a number of disease states at cellular levels using a variety of imaging modalities (fl uorescence, PET and SPECT, MRI, electron microscopy).

Image-Guided Navigation System for Endoscopic Eye Surgery

A flexible endoscope for ophthalmic orbital surgery is presented. The endoscope has illuminating fiber, image fiber and a free conduit to deliver purge gas/fluid in addition to instruments such as ablation instruments, coagulating instrument or a medication delivery instrument.

Laser Range Scanning for Cortical Surface Registration & Deformation Tracking

This technology is fundamentally a new way to align a patient in an image-guided surgery system (registration) without the use of fiducial markers on the cranium exterior. The system utilizes laser range scanning technology, the natural features on the cortical surface, and the corresponding natural features derived from the patient's preoperative magnetic resonance tomograms. In addition, the technology is amenable to measuring deformation (brain shift) for use within a mathematical model-based strategy for shift compensation.

Method to model elasticity parameters (i.e. elastography) of tissue as a complement to imaging

Elastography is the direct imaging of tissue elasticity parameters. The invention is a method of modeling of tissue called Modality Independent Elastography (MIE), within the context of dermoscopy imaging, for the purpose of optimizing the similarity between model-created images and the patient acquired images.

Micro-Mirrored Pyramidal Wells

This technology is a system for 3D imaging of live biological cells fabricated using conventional semiconductor technology that provides simultaneous images from multiple vantage points.

Trimodal Handheld Probe Based on Raman Spectroscopy and Confocal Imaging for Cancer Detection

This technology relates to a device and method for non-invasive evaluation of a target of interest of a living subject, and in particular to devices and methods that integrate confocal imaging with confocal Raman spectroscopy, for non-invasive evaluation of the biochemical compositions and morphological details of normal and cancerous skin lesions of a living subject.

Method for Determining Bone Surface Points Using A-Mode Ultrasound

An A-mode ultrasound transducer is tracked in three-dimensions by an optical position tracking system as the transducer is scanned over the skin to generate measurements of bone surface distance from the transducer. A processor correlates the ultrasound data with position and orientation data to generate a three-dimensional physical space model of the bone surface which is registered with an image space model of the bone surface generated from a tomographic image to produce an alignment of the two models. The ultrasound transducer is replaced by an instrument which is also optically tracked. The alignment is used to translate instrument position in physical space to a position in image space for generation on a monitor of a composite display of the instrument and the tomographic image. This composite display can be used to guide positioning and orienting the instrument in physical space with respect to sites of interest observed in the tomographic image on the display.

Featured Video

2012 Highlights

A motion graphic video describing operational improvements and successes of FY2012. Click here for a full PDF report.