Available Technologies

ADDITIONAL FILTERS

Medical Devices

35 available technologies

Diamond Triode Devices with a Diamond Microtip Emitter

This technology is a diamond triode for micro and power electronics. Diamond microtip field emitters are used in triode vacuum electronic devices, sensors and displays. Diamond triode devices having integral anode and grid structures are fabricated using a patented process. Ultra-sharp tips are formed on the emitters in the fabrication process in which diamond is deposited into mold cavities in a two-step deposition sequence. During deposition of the diamond, the carbon graphite content is carefully controlled to enhance emission performance. The tips or the emitters are treated by post-fabrication processes to further enhance performance.

Sterile Blood Culture Collection Kit

Scientists at Vanderbilt have developed a sterile kit to collect blood cultures that results in substantially fewer contaminated cultures compared to the current standard of care for collecting culture specimens.

Real Time Surgical Imaging

Vanderbilt researchers have developed a device that allows for a more accurate and precise detection of brain tumor borders in real time. This allows neurosurgeons to remove all tumor tissue without removing critical normal tissue in surgical brain resections.

Magnetically Attachable Polydimethylsiloxane Stencils (MAtS)

Vanderbilt researchers have developed a unique system for patterning cells or proteins in cell culture environments using magnetically attachable stencils (MAtS) secured onto a culture surface by applying transbase magnets.

Rotary planar peristaltic micropump (RPPM) and Rotary Planar Valve (RPV) for microfluidic systems

A research team led by Professor John Wikswo of Vanderbilt University has developed a low-cost, small-volume, metering peristaltic micro pumps and microvalves. They can be either utilized as a stand-alone device, or incorporated into microfluidic subsystems for research instruments or miniaturized point-of-care instruments, Lab on a Chip devices, and disposable fluid delivery cartridges. The key advantage of this pump is that it can deliver flow rates as low as a few hundred nL/min to tens of µL/min against pressure heads as high as 20 psi, at approximately 1/10th the cost of stand-alone commercial syringe and peristaltic pumps. The RPV can implement complicated fluid control protocols and fluidic mixing without bulky pneumatic controllers. Both the RPPM and RPV can be readily optimized for particular applications.

System and Methods of Using Image-guidance for Placement of Cochlear Stimulator Devices, Drug Carrier Devices, or the Like

Vanderbilt inventors have developed and tested a device (C-in) and method that would shift the current invasive, risky surgical procedure of cochlear implantation to a less invasive outpatient procedure.

PosiSeat™: Assured Seating of Threaded Surgical Components

Vanderbilt presents an intraoperative device for taking the guesswork out of whether or not a threaded component is securely affixed to bone. This device is an anchor driver that automatically releases upon proper seating of the anchor on the bone of interest.

Device for Hernia Mesh/Tissue Graft Positioning and Placement

Simple device to assist in selection of appropriate sized mesh/tissue graft for abdominal wall hernia repair. This device will then be utilized to "stretch" the material flat removing redundancies/folds. Once "flattened" the material can be pulled to the abdominal wall without the need for multiple instruments. The mesh/tissue graft can then be appropriately positioned over the defect to assure adequate material overlap. Once positioned the material is fixed in place with traditional techniques.The device can also be used in a similar fashion via a natural orifice transluminal endoscopic surgery for anterior abdominal wall defects.

Cuffed Inner Cannula and Flexible Outer Cannula Tracheostomy Tube

This new tracheostomy tube design prevents the need for decannulation when changing from a cuffed to cuffless (or vice versa) tracheostomy. It also enables a comfortable and fit in patients with both large and small neck diameters. The tube enhances patient safety by maintaining the airway at all times when downsizing or upsizing.

Intervertebral Disc Replacement

An implantable intervertebral disc prosthesis that comprises a disc member having an upper surface, a lower surface, and a perimeter surface. The disc includes an axis at least one slit defined in the perimeter surface; the slit being of sufficient depth and thickness to provide flexure. The slit terminates in a perimeter opening larger than the slit thickness. The perimeter opening (i.e., hole) acts as a pivot point and relieves stress. The disc prosthesis optionally comprises a cavity with an upper seat defined on the lower surface, a lower disc having an upper and lower surface and a lower seat defined on the upper surface, and a support ball. The support ball engages the seat on the upper disc and the seat on the lower disc.

Patent Ductus Arteriosus Stent

Vanderbilt researchers have created a low-cost, removable Patent Ductus Arteriosus (PDA) stent for pediatric patients. There is currently no commercially available pediatric PDA stent, but it is estimated that over 3,000 babies are born each year in the United States with cyanotic heart disease; a significant fraction of whom can benefit from temporary placement of the PDA stent described here.

Direct Laser and Ultraviolet Lithography of Porous Silicon Photonic Crystal Devices

We have developed a technique to process photolithographically porous silicon heterostructures and photonic crystal architectures, using laser and ultraviolet light exposure and a subsequent alcoholic bath treatment. This technique would be the first method to process directly the optical properties of porous silicon multilayers, heterostructures, and photonic crystal architectures.

Featured Video

CTTC: Moving Innovation Forward.

To watch more videos like this one, visit CTTC's YouTube Channel.

CTTC on Twitter