Available Technologies

ADDITIONAL FILTERS

Diagnostics

36 available technologies

Near-Infrared Dye with Large Stokes Shift for Simultaneous Multichannel in vivo Molecular Imaging

Fluorescent labels having near-infrared (NIR) emission wavelengths have the ability to penetrate tissue deeper than other emission wavelengths, providing enormous potential for non-invasive imaging applications. However, advancement of optical imaging (particularly NIR imaging) is hindered by the limitation of narrow Stokes shift of most infrared dyes currently available in the market. Vanderbilt researchers have developed a novel NIR dye (4-Sulfonir) for multichannel imaging that enables in vivo imaging of multiple targets due to its large Stokes shift. 4-Sulfonir with its unique large Stokes shift (~150 nm) and wide excitation spectrum could be used in parallel with other NIR dyes for imaging two molecular events simultaneously in one target.

Molecular Profiles for Subtyping Triple Negative Breast Cancer

Personalized medicine is at the forefront of medical news and specialized diagnostics that can align patients with the correct treatment are the key to this type of medicine. Jennifer Pietenpol and colleagues have performed extensive research and discovered that triple negative breast cancer (TNBC) is a heterogeneous disease with at least six subtypes. These subtypes have differing biological behaviors and sensitivities to known therapeutics. Diagnostic assays will help guide personalized and more effective therapy.

Assays to detect Cox-2 activity for determining treatment effectiveness for a variety of inflammatory and cancerous diseases

This invention identifies COX-2 metabolites as markers for a variety of inflammatory, neurodegenerative and cancerous diseases, and it provides a means for determining and monitoring levels of metabolites of COX-2 from patient samples. It may also be used to augment information from imaging and other diagnostic and disease progression monitoring modalities. In addition, the technology provides a means for testing activity of agonists or antagonists that can aid in the design of drugs that reduce effects of harmful prostaglandins with reduced side effects.

Transcend: Qualitative Diagnosis System & Method

Transcend is a model-based diagnosis system for fault detection and isolation of abrupt faults in complex to very complex engineered systems. It applies models of dynamic system behavior to obtain accurate predictions for measured transients and compares predictions with actual observations to distill the true cause for the faulty behavior. To successfully perform diagnosis, Transcend needs a dynamic model of the system.

Porous Silicon Membrane Waveguide Biosensor

The porous silicon membrane waveguide is a low-cost, high sensitivity sensor for the detection of biological and chemical materials. It is cheaper and more sensitive than commercial fiber optic and SPR sensors for low molecular weight species.

'Coffee Ring' Diagnostic for Point-of-Care Biomarker Detection

Bright minds at Vanderbilt University have unveiled a breakthrough technology that could bring sophisticated biomarker diagnostics to the developing world. The point-of-care diagnostic is designed to be used in the field; no specialized equipment, expertise, or white lab coats are required. The diagnostic is based upon the ingenous observation that evaporating liquid droplets leave behind a characteristic ring pattern, which may be familiar to our readers in the form of a coffee-ring stain.

Gene and Mutations Causative for Familial Primary Pulmonary Hypertension

This invention relates generally to a method of identifying an individual having an increased susceptibility to developing Familial Primary Pulmonary Hypertension (FPPH), as well as to a method for diagnosing an individual suffering from FPPH. The invention also relates to a method of identifying an individual having an increased susceptibility to developing (non-familial) Primary Pulmonary Hypertension (PPH), as well as to a method for diagnosing an individual suffering from PPH.

Recombinase-Deficient Helicobacter Pylori and Related Methods

An isolated nucleic acid encoding the Helicobacter pylori recombinase comprising the nucleotide sequence defined in the Sequence Listing as SEQ ID NO:1 is provided. Also provided is an isolated nucleic acid that selectively hybridizes with the nucleic acid of claim 1 under stringent conditions and has at least 70% complementarity with the segment of the nucleic acid of SEQ ID NO:1 to which it hybridizes. Also provided is a mutant strain of H. pylori that does not express a functional recombinase (recA.sup.- mutant). An immunogenic amount of the recA.sup.- mutant H. pylori in a pharmaceutically acceptable carrier is provided. A method of immunizing a subject against infection by H. pylori comprises administering to the subject an immunogenic amount of mutant H. pylori in a carrier for the mutant.

Improved Piezoimmunosensor

An apparatus comprising one or more piezoelectric mass sensors for use in diagnostic and analytic processes, in particular for immunochemical detection of diagnostically relevant analytes in real time. Each piezoelectric mass sensor comprises a piezoelectric crystal with a receptor surface which has immobilized thereon a lawn of recombinant antibodies comprising single V.sub.H chain or single-chain Fv (scFv) polypeptides specific for a particular antigen. Binding of antigen to the recombinant antibodies results in a change in mass on the receptor surface which is detected as a change in resonant frequency. In a preferred embodiment, the receptor layer is a precious metal such as gold which facilitates self-assembly of the recombinant antibodies into a lawn on the receptor surface via a cysteine residue at the carboxy terminus of the attachment polypeptide.

Tetrameric LERK Promotes Cell Attachment and Cell-Cell Assembly

The present invention provides methods for screening an EphB receptor or an EphB receptor-binding ligand for the ability to promote a selected biological activity when in multimeric form. The invention also provides methods for initiating, promoting, directing, or inhibiting biological activities that involve EphB receptors and/or EphB receptor-binding ligands. The invention further provides compositions that can be used in the foregoing methods.

Cytotoxin Associated cagB, C Genes of H. Pylori

A cagB gene of H. pylori is provided. This nucleic acid can be the nucleic acid consisting of nucleotides 193 through 1158 in the sequence set forth as SEQ ID NO:1, which is an example of a native coding sequence for CagB. This nucleic acid can also be in a vector suitable for expressing a polypeptide encoded by the nucleic acid. A cagC gene of H. pylori is provided. This nucleic acid can be the isolated nucleic acid consisting of nucleotides 1170 through 3830 in the sequence set forth as SEQ ID NO:3, which is an example of a native coding sequence for CagC. This nucleic acid can also be in a vector suitable for expressing a polypeptide encoded by the nucleic acid. Isolated nucleic acids that specifically hybridize with cagB and cagC are provided. CagB and CagC are associated with peptic ulceration and other clinical syndromes in humans infected with strains of H. pylori that express it.

FOXA1 as a Biomarker for Urinary Bladder Cancer

In 2009 over 70,000 American were diagnosed with urinary bladder cancer, and in that same year over 14,000 Americans died of bladder cancer. Low funding for bladder cancer helps explain the slow progress in both the identification of biomarkers and the development of new treatments for metastatic bladder cancer. Nonetheless, novel diagnostic biomarkers are needed to aid in the early identification of patients with bladder cancer, and also to determine which patients are likely to progress. Vanderbilt researchers have identified such a biomarker whose expression is reduced and lost during progression of bladder cancer.

System and Method for Measuring of Lung Vascular Injury by Ultrasonic Velocity and Blood Impedance

The present invention is a method for assessing capillary permeability to determine vascular lung injury without requiring the injection of radioactive material or requiring the sampling of blood. The method includes measuring impedance and ultrasonic velocity of blood flow through a lung. A hypertonic bolus is injected into the blood flow, and measurements of the blood flow are taken to determine the ultrasonic velocity and the electrical impedance of the blood. These measurements are used to calculate the capillary transport quantity, which is the product of the reflection coefficient for movement of fluid across the capillary barrier and the filtration coefficient. The measured value of the capillary transport quantity can then be compared to a conventional capillary transport quantity for healthy lungs, and one can determine injury by a significant decrease in the measured capillary transport quantity as compared to the standard measurements. Furthermore, a comparison of the osmotic transient graphs of the plotted indicator curves can serve to acknowledge lung vascular injury. Lung injury can be determined from the measured data when the point of osmotic equilibrium (where the indicator curve crosses the baseline) is significantly delayed as compared to the point of osmotic equilibrium plotted for a healthy lung.

Featured Video

CTTC: Moving Innovation Forward.

To watch more videos like this one, visit CTTC's YouTube Channel.

CTTC on Twitter